I am trying to get the Python package torch-geometric to work using Nix (I am on NixOS). Currently, I use mach-nix to try and setup a Python environment. However, the difficulty is that some of the dependencies should be downloaded from a separate file server (not pypi), i.e. https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html. I am first trying to setup an environment containing a single torch-geometric
dependency: torch-sparse.
Currently I have the following shell.nix
:
{ pkgs ? import <nixpkgs> {} }:
let
mach-nix = import (builtins.fetchGit {
url = "https://github.com/DavHau/mach-nix/";
ref = "refs/tags/3.3.0";
}) {
python = "python38";
};
sparse = mach-nix.buildPythonPackage {
pname = "torch_sparse";
version = "0.6.9";
requirements = ''
torch
scipy
pytest
pytest-cov
pytest-runner
'';
src = builtins.fetchGit {
url = "https://github.com/rusty1s/pytorch_sparse";
ref = "refs/tags/0.6.9";
};
};
in mach-nix.mkPython {
requirements = "torch-sparse";
packagesExtra = [
sparse
];
}
Which, upon running nix-shell
, fails with the following error message:
running build_ext
error: [Errno 2] No such file or directory: 'which'
builder for '/nix/store/fs9nrrd2a233xp5d6njy6639yjbxp4g0-python3.8-torch_sparse-0.6.9.drv' failed with exit code 1
I tried adding the which
package to either checkInputs
and buildInputs
, but that does not solve the problem. Evidently, I try to build the package directly from its GitHub repo, as I am unsure on how to reference a wheel
package in mach-nix
. I am relatively new to the NixOS environment, and, quite frankly, I am completely lost.
How should I go about installing a Python package such as torch-sparse
or torch-geometric
? Am I even using the correct tools?
I have managed to come up with a working Nix expression. I will leave the answer here for future reference. Running the following expression using nix-shell
will create a shell with torch-1.8.0
and torch-geometric-1.7.0
and their required dependencies.
{ pkgs ? import <nixpkgs> { } }:
let
python = pkgs.python38;
pytorch-180 = let
pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion;
unsupported = throw "Unsupported system";
version = "1.8.0";
in python.pkgs.buildPythonPackage {
inherit version;
pname = "pytorch";
format = "wheel";
src = pkgs.fetchurl {
name = "torch-${version}-cp38-cp38-linux_x86_64.whl";
url =
"https://download.pytorch.org/whl/cu111/torch-${version}%2Bcu111-cp38-cp38-linux_x86_64.whl";
hash = "sha256-4NYiAkYfGXm3orLT8Y5diepRMAg+WzJelncy2zJp+Ho=";
};
nativeBuildInputs = with pkgs; [ addOpenGLRunpath patchelf ];
propagatedBuildInputs = with python.pkgs; [
future
numpy
pyyaml
requests
typing-extensions
];
postInstall = ''
# ONNX conversion
rm -rf $out/bin
'';
postFixup = let rpath = pkgs.lib.makeLibraryPath [ pkgs.stdenv.cc.cc.lib ];
in ''
find $out/${python.sitePackages}/torch/lib -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do
echo "setting rpath for $lib..."
patchelf --set-rpath "${rpath}:$out/${python.sitePackages}/torch/lib" "$lib"
addOpenGLRunpath "$lib"
done
'';
pythonImportsCheck = [ "torch" ];
meta = with pkgs.lib; {
description =
"Open source, prototype-to-production deep learning platform";
homepage = "https://pytorch.org/";
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
license = licenses.unfree; # Includes CUDA and Intel MKL.
platforms = platforms.linux;
maintainers = with maintainers; [ danieldk ];
};
};
sparse = with python.pkgs;
buildPythonPackage rec {
pname = "torch_sparse";
version = "0.6.9";
src = pkgs.fetchurl {
name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
url =
"https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
hash = "sha256-6dmZNQ0FlwKdfESKhvv8PPwzgsJFWlP8tYXWu2JLiMk=";
};
format = "wheel";
propagatedBuildInputs = [ pytorch-180 scipy ];
# buildInputs = [ pybind11 ];
# nativeBuildInputs = [ pytest-runner pkgs.which ];
doCheck = false;
postInstall = ''
rm -rf $out/${python.sitePackages}/test
'';
};
scatter = with python.pkgs;
buildPythonPackage rec {
pname = "torch_scatter";
version = "2.0.7";
src = pkgs.fetchurl {
name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
url =
"https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
hash = "sha256-MRoFretgyEpq+7aJZc0399Kd+f28Uhn5+CxW5ZIKwcg=";
};
format = "wheel";
propagatedBuildInputs = [ pytorch-180 ];
doCheck = false;
postInstall = ''
rm -rf $out/${python.sitePackages}/test
'';
};
cluster = with python.pkgs;
buildPythonPackage rec {
pname = "torch_cluster";
version = "1.5.9";
src = pkgs.fetchurl {
name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
url =
"https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
hash = "sha256-E2nywtiZ7m7VA1J7AY7gAHYvyN9H3zl/W0/WsZLzwF8=";
};
format = "wheel";
propagatedBuildInputs = [ pytorch-180 ];
doCheck = false;
postInstall = ''
rm -rf $out/${python.sitePackages}/test
'';
};
spline = with python.pkgs;
buildPythonPackage rec {
pname = "torch_spline_conv";
version = "1.2.1";
src = pkgs.fetchurl {
name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
url =
"https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
hash = "sha256-ghSzoxoqSccPAZzfcHJEPYySQ/KYqQ90mFsOdt1CjUw=";
};
format = "wheel";
propagatedBuildInputs = [ pytorch-180 ];
doCheck = false;
postInstall = ''
rm -rf $out/${python.sitePackages}/test
'';
};
python-louvain = with python.pkgs;
buildPythonPackage rec {
pname = "python-louvain";
version = "0.15";
src = fetchPypi {
inherit pname version;
sha256 = "1sqp97fwh4asx0jr72x8hil8z8fcg2xq92jklmh2m599pvgnx19a";
};
propagatedBuildInputs = [ numpy networkx ];
doCheck = false;
};
googledrivedownloader = with python.pkgs;
buildPythonPackage rec {
pname = "googledrivedownloader";
version = "0.4";
src = fetchPypi {
inherit pname version;
sha256 = "0172l1f8ys0913wcr16lzx87vsnapppih62qswmvzwrggcrw2d2b";
};
doCheck = false;
};
geometric = with python.pkgs;
buildPythonPackage rec {
pname = "torch_geometric";
version = "1.7.0";
src = fetchPypi {
inherit pname version;
sha256 = "1a7ym34ynhk5gb3yc5v4qkmkrkyjbv1fgisrsk0c9xay66w7nwz9";
};
propagatedBuildInputs = [
pytorch-180
numpy
scipy
tqdm
networkx
scikit-learn
requests
pandas
rdflib
jinja2
numba
ase
h5py
python-louvain
googledrivedownloader
];
nativeBuildInputs = [ pytest-runner ];
doCheck = false;
# postInstall = ''
# rm -rf $out/${python.sitePackages}/test
# '';
};
python-with-pkgs = python.withPackages
(ps: with ps; [ pytorch-180 scatter sparse cluster spline geometric ps ]);
in pkgs.mkShell { buildInputs = [ python-with-pkgs ]; }