I want to train a custom NER model using spaCy v3 I prepared my train data and I used this script
import spacy
from spacy.tokens import DocBin
nlp = spacy.blank("en") # load a new spacy model
db = DocBin() # create a DocBin object
for text, annot in tqdm(TRAIN_DATA): # data in previous format
doc = nlp.make_doc(text) # create doc object from text
ents = []
for start, end, label in annot["entities"]: # add character indexes
span = doc.char_span(start, end, label=label)
if span is None:
pass
else:
ents.append(span)
doc.ents = ents # label the text with the ents
db.add(doc)
db.to_disk("./train.spacy") # save the docbin object
then it prints this error:
AttributeError: 'DocBin' object has no attribute 'to_disk'
Make sure you are really using spaCy 3, in case you haven't :)
You can check this from the console by running python -c "import spacy; print(spacy.__version__)"
By issuing via command line pip install spacy==3.0.6
in a python env, and then running in the python console
import spacy
from spacy.tokens import DocBin
nlp = spacy.blank("en") # load a new spacy model
db = DocBin() # create a DocBin object
# omitting code for debugging purposes
db.to_disk("./train.spacy") # save the docbin object
you should get no errors.