How can I convert my data from this:
example <- data.frame(RTD_1_LOC = c('A', 'B'), RTD_2_LOC = c('C', 'D'),
RTD_3_LOC = c('E', 'F'), RTD_4_LOC = c('G', 'H'),
RTD_5_LOC = c('I', 'J'),RTD_1_OFF = c('1', '2'), RTD_2_OFF = c('3', '4'),
RTD_3_OFF = c('5', '6'), RTD_4_OFF = c('7', '8'),
RTD_5_OFF = c('9', '10'))
to this:
example2 <- data.frame(RTD = c(1,1,2,2,3,3,4,4,5,5),LOC = c('A', 'B','C','D','E','F','G','H','I','J'),
OFF = c(1,2,3,4,5,6,7,8,9,10))
I have been using tidyverse gather, but I end up with about 50 columns
ex <- gather(example,RTD, Location, RTD_1_LOC:RTD_5_LOC)
ex$RTD <- sub('_LOC',"",ex$RTD)
ex3 <- gather(ex,RTD, Offset, RTD_1_OFF:RTD_5_OFF)
ex2$RTD <- sub('_OFF',"",ex2$RTD)
We can use pivot_longer
from tidyr
and specify the names_pattern
to capture the groups from the column names. As the 'RTD' column should be left as such, specify in the names_to
, a vector of 'RTD' and the column values (.value
) so that the 'RTD' will get the digits capture ((\\d+
) and the word ((\\w+)
) 'LOC', 'OFF' will be created as new columns with the column values
library(dplyr)
library(tidyr)
example %>%
pivot_longer(cols = everything(),
names_to = c("RTD", ".value"), names_pattern = "\\w+_(\\d+)_(\\w+)")
-output
# A tibble: 10 x 3
RTD LOC OFF
<chr> <chr> <chr>
1 1 A 1
2 2 C 3
3 3 E 5
4 4 G 7
5 5 I 9
6 1 B 2
7 2 D 4
8 3 F 6
9 4 H 8
10 5 J 10