Converting the nested dictionary to dataframe with, dictionary keys as column names and values corresponding to those keys as column values of the dataframe.
I'm new to python and have tried several approaches but failed in achieving so, please help.
dict = {
'sheet1': {
'col1': ['a', 'b', 'c', 'd', 'e'],
'col2': ['p', 'q', 'r', 's', 't'],
'col3': ['l', 'm', 'n', 'o'],
'col4': ['e', 'b', 'w', 't', 'b']
},
'sheet2': {
'col1': ['r', 'w', 'y', 'g', 'r'],
'col2': ['q', 'y', 'f', 'w'],
'col3': ['w', 'g', 4, 2, 'd']
}
}
output:
col1 col2 col3 col4
a p l e
b q m b
c r n w
d s o t
e t nan b
r q w nan
w y g nan
y f 4 nan
g w 2 nan
r nan d nan
You can accomplish this by creating multiple dataframes from nested dictionaries, and joining them using pd.concat
. For example:
>>> data = {
... 'sheet1': {'col1': [1, 2, 3, 4], 'col2': [5, 6, 7, 8]},
... 'sheet2': {'col1': [11, 12, 13, 14], 'col2': [15, 16, 17, 18]},
... }
>>> df = pd.concat([pd.DataFrame(d) for d in data.values()], ignore_index=True)
>>> df
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
4 11 15
5 12 16
6 13 17
7 14 18