i am trying to normalize a tf.data.Dataset as seen below:
def normalization(image):
print(image['label'])
return 1
z = val.map(normalization)
the val dataset is like this :
<TakeDataset shapes: { id: (), image: (32, 32, 3), label: ()}, types: {id: tf.string, image: tf.uint8, label: tf.int64}>
and if i print one element i can see :
{ 'id': <tf.Tensor: shape=(), dtype=string, numpy=b'train_31598'>, 'image': <tf.Tensor: shape=(32, 32, 3), dtype=uint8,
numpy= array([[[151, 130, 106],
.....,
[104, 95, 77]]], dtype=uint8)>, 'label': <tf.Tensor: shape=(), dtype=int64, numpy=50>}
However printing this inside my function outputs :
'id': <tf.Tensor 'args_1:0' shape=() dtype=string>, 'image': <tf.Tensor 'args_2:0' shape=(32, 32, 3) dtype=uint8>, 'label': <tf.Tensor 'args_3:0' shape=() dtype=int64>}
so i can't perform any transformation to my image array because instead of a tensor array i have 'args_2:0'
How can i pass each element correctly to my normalization fucntion?
I tried your code on a standard dataset and it wasn't working. image['label'] isn't correct because you should give an integer. Here is my modification to your code:
def normalization(image,label):
print(image[0])
return tf.cast(image, tf.float32) / 255., label
z = ds_train.map(normalization)