I am working on a C++ intrinsic wrapper for x64 and neon. I want my functions to be constexpr. My motivation is similar to Constexpr and SSE intrinsics, but #pragma omp simd and intrinsics may not be supported by the compiler (GCC) in a constexpr function. The following code is just a demonstration (auto-vectorization is good enough for addition).
struct FA{
float c[4];
};
inline constexpr FA add(FA a, FA b){
FA result{};
#pragma omp simd // clang error: statement not allowed in constexpr function
for(int i = 0; i < 4; i++){ // GCC error: uninitialized variable 'i' in 'constexpr' function
result.c[i] = b.c[i] + a.c[i];
}
return result;
}
struct FA2{
__m128 c;
};
inline constexpr FA2 add2(FA2 a, FA2 b){
FA2 result{};
result.c = _mm_add_ps(a.c,b.c); // GCC error: call to non-'constexpr' function '__m128 _mm_add_ps(__m128, __m128)'
return result; // fine with clang
}
I have to provide reference C++ code for portability anyway. Is there a code efficient way to let the compiler use the reference code at compile time?
f(){
if(){
// constexpr version
}else{
// intrinsic version
}
}
It should work on all compilers that support omp, intrinsics and C++20.
Using std::is_constant_evaluated, you can get exactly what you want:
#include <type_traits>
struct FA{
float c[4];
};
// Just for the sake of the example. Makes for nice-looking assembly.
extern FA add_parallel(FA a, FA b);
constexpr FA add(FA a, FA b) {
if (std::is_constant_evaluated()) {
// do it in a constexpr-friendly manner
FA result{};
for(int i = 0; i < 4; i++) {
result.c[i] = b.c[i] + a.c[i];
}
return result;
} else {
// can be anything that's not constexpr-friendly.
return add_parallel(a, b);
}
}
constexpr FA at_compile_time = add(FA{1,2,3,4}, FA{5,6,7,8});
FA at_runtime(FA a) {
return add(a, at_compile_time);
}
See on godbolt: https://gcc.godbolt.org/z/szhWKs3ec