When I try to create a data frame to compare actual (test data) and predicted values of the classification model, I get an error. You could see the error message below the code. The implementation of the code looks like this:
df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
ValueError Traceback (most recent call last)
<ipython-input-22-45d19b608f98> in <module>
----> df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
ValueError: Data must be 1-dimensional
Edit: The sample content of y_test and y_pred along with their data types are as follows
y_test
Out:array([[0],
[0],
[0],
[0],
[0],
[1],
[6],
[0],
[9],
[0],
[0],
[5],
[0],
[6],
[7],
[0],
[0],
[9],
[5],
[0],
[0],
[0],
[0],
[5],
[0],
[3],
[7],
[0],
[0],
[9],
[9],
[0],
[9],
[7],
[0],
[0],
[0],
[0],
[0],
[9],
[0],
[8],
[7],
[9],
[7],
[5],
[9],
[0],
[0],
[0],
[0],
[0],
[7],
[0],
[0],
[0],
[7],
[3],
[4],
[5],
[1],
[8],
[0],
[9],
[0],
[0],
[0],
[0],
[0],
[8],
[7],
[0],
[0],
[0],
[7],
[5],
[8],
[7]])
y_test.dtype
Out:dtype('int32')
y_pred
Out:array([0, 7, 0, 3, 8, 0, 8, 7, 8, 0, 5, 7, 0, 0, 7, 0, 8, 0, 7, 0, 0,
0,3, 9, 0, 5, 0, 7, 9, 7, 0, 5, 5, 7, 0, 0, 0, 0, 9, 8, 7, 8, 1, 5,
0, 0, 0, 0, 0, 0, 7, 0, 5, 0, 8, 9, 9, 0, 9, 0, 0, 9, 0, 9, 0, 3,
0, 0, 9, 0, 0, 0, 0, 0, 0, 7, 0, 7])
y_pred.dtype
Out:dtype('int32')
How can I solve this issue?
y_test is an array with arrays inside of it so not a 1d vector. use y_test.flatten to flatten it to a 1d array:
df = pd.DataFrame({'Actual': y_test.flatten(), 'Predicted': y_pred})