I have a pre-trained model which I load like so:
from transformers import BertForSequenceClassification, AdamW, BertConfig, BertModel
model = BertForSequenceClassification.from_pretrained(
"bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab.
num_labels = 2, # The number of output labels--2 for binary classification.
# You can increase this for multi-class tasks.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
I want to create a new model with the same architecture, and random initial weights, except for the embedding layer:
==== Embedding Layer ====
bert.embeddings.word_embeddings.weight (30522, 768)
bert.embeddings.position_embeddings.weight (512, 768)
bert.embeddings.token_type_embeddings.weight (2, 768)
bert.embeddings.LayerNorm.weight (768,)
bert.embeddings.LayerNorm.bias (768,)
It seems I can do this to create a new model with the same architecture, but then all the weights are random:
configuration = model.config
untrained_model = BertForSequenceClassification(configuration)
So how do I copy over model
's embedding layer weights to the new untrained_model
?
Weights and bias are just tensor and you can simply copy them with copy_:
from transformers import BertForSequenceClassification, BertConfig
jetfire = BertForSequenceClassification.from_pretrained('bert-base-cased')
config = BertConfig.from_pretrained('bert-base-cased')
optimus = BertForSequenceClassification(config)
parts = ['bert.embeddings.word_embeddings.weight'
,'bert.embeddings.position_embeddings.weight'
,'bert.embeddings.token_type_embeddings.weight'
,'bert.embeddings.LayerNorm.weight'
,'bert.embeddings.LayerNorm.bias']
def joltElectrify (jetfire, optimus, parts):
target = dict(optimus.named_parameters())
source = dict(jetfire.named_parameters())
for part in parts:
target[part].data.copy_(source[part].data)
joltElectrify(jetfire, optimus, parts)