{
"currency": {
"Wpn": {
"units": "KB_per_sec",
"type": "scalar",
"value": 528922.0,
"direction": "up"
}
},
"catalyst": {
"Wpn": {
"units": "ns",
"type": "scalar",
"value": 70144.0,
"direction": "down"
}
},
"common": {
"Wpn": {
"units": "ns",
"type": "scalar",
"value": 90624.0,
"direction": "down"
}
}
}
So I have to basically convert nested json into excel, for which my approach was to flatten json file using json_normalise , but as I am new to all these...I always seem to end up in KeyError...
Here's my code so far , assuming that the file is named as json.json
import requests
from pandas import json_normalize
with open('json.json', 'r') as f:
data = json.load(f)
df = pd.DataFrame(sum([i[['Wpn'], ['value']] for i in data], []))
df.to_excel('Ai.xlsx')
I'm trying to get output on an excel sheet consisting of currency and common along with their resp. values as an output
I know , there are alot of similar questions , but trust me I have tried most of them and yet I didn't get any desirable output... Plz just help me in this
Try:
import json
import pandas as pd
with open('json.json', 'r') as f: data = json.load(f)
data = [{'key': k, 'wpn_value': v['Wpn']['value']} for k, v in data.items()]
print(data)
# here, the variable data looks like
# [{'key': 'currency', 'wpn_value': 528922.0}, {'key': 'catalyst', 'wpn_value': 70144.0}, {'key': 'common', 'wpn_value': 90624.0}]
df = pd.DataFrame(data).set_index('key') # set_index() optional
df.to_excel('Ai.xlsx')
The result looks like
key | wpn_value |
---|---|
currency | 528922 |
catalyst | 70144 |
common | 90624 |