I'm trying to implement an SPL loss in keras. All I need to do is pretty simple, I'll write it in numpy to explain what I need:
def spl_loss(y_true, y_pred, lmda):
# compute any arbitrary loss function
L = categorical_cross_entropy(y_true, y_pred)
# set to zero those values with an error greater than lambda
L[L>lmda] = 0
return L
I'm trying to implement it following this tutorial but I'm having troubles with the step needed to set values to zero.
Currently I have the following code:
def spl_loss(lmda, loss_fn):
def loss(y_true, y_pred):
# compute an arbitrary loss function, L
loss_value = loss_fn(y_true, y_pred) # tensor of shape (64,)
# get the mask of L greater than lmda
mask = tf.greater( loss_value, tf.constant( float(lmda) ) ) # tensor of shape (64,)
# compute indexes for the mask
indexes = tf.reshape(tf.where(mask), [-1]) # tensor of shape (n,); where n<=64
# set to zero values on indexes
spl_loss_value = tf.tensor_scatter_nd_update(loss_value, indexes, tf.zeros_like(loss_value, dtype=loss_value.dtype) ) # this line gives the error
return spl_loss_value
return loss
According to the docs, tensor_scatter_nd_update
operation should perform the assignment operation, but it fails with the following error:
spl_loss_value = tf.tensor_scatter_nd_update(loss_value, indexes, tf.zeros_like(loss_value, dtype=loss_value.dtype) )
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:201 wrapper **
return target(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/array_ops.py:5512 tensor_scatter_nd_update
tensor=tensor, indices=indices, updates=updates, name=name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_array_ops.py:11236 tensor_scatter_update
_ops.raise_from_not_ok_status(e, name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:6862 raise_from_not_ok_status
six.raise_from(core._status_to_exception(e.code, message), None)
<string>:3 raise_from
InvalidArgumentError: Inner dimensions of output shape must match inner dimensions of updates shape. Output: [64] updates: [64] [Op:TensorScatterUpdate]
I'm running it in colab, here you can try it.
I tried several re-shapes, because I understand it is a matter of shapes expected vs obtained, but I don't find the way. What's going on here?
Thanks in advance
The reason you're getting this error is that the indices
in tf.tensor_scatter_nd_update
requires at least two axes, or tf.rank(indices) > = 2
need to be fullfilled. The reason for indices
in 2D
(in scaler update) is to hold two information, one is the length of the updates (num_updates) and the length of the index vector. For a detailed overview of this, check the following answer regarding this: Tensorflow 2 - what is 'index depth' in tensor_scatter_nd_update?.
Here is the correct implementation of SPL loss in tensorflow.
def spl_loss(lmda):
def loss(y_true, y_pred):
# compute an arbitrary loss function, L
loss_value = keras.losses.sparse_categorical_crossentropy(y_true, y_pred)
# get the mask of L greater than lmda
mask = tf.greater( loss_value, tf.constant(float(lmda) ) )
# compute indexes for the mask
indexes = tf.where(mask) # tensor of shape (n,); where n<=64
updates = tf.reshape(tf.zeros_like(indexes, dtype=tf.float32), [-1])
# scaler update check
num_updates, index_depth = indexes.shape.as_list()
assert updates.shape == [num_updates]
assert index_depth == tf.rank(loss_value)
# print()
# print('A', tf.reshape(tf.where(mask), [-1])[:10].numpy())
# print('B', tf.where(mask).numpy()[:10])
# print('Ranks: ', tf.rank(loss_value).numpy(),
# tf.rank(indices).numpy(),
# tf.rank(updates).numpy())
# print('Shape: ', loss_value.shape, indexes.shape, updates.shape)
# set to zero values on indexes
spl_loss_value = tf.tensor_scatter_nd_update(loss_value, indexes, updates )
return spl_loss_value
return loss
...
model.compile(optimizer="adam", loss=spl_loss(lmda=2.), run_eagerly=True)
...