I have the following Python nested loop and trying to decrease its execution time. I have tried a few optimizations but don't help much. I was wondering if someone can give some hints or if there is any Pythonic way or etc.
def(input_list, A, B, threshold):
a_dict = {}
idx = 0
for sc, nb in zip(A, B):
b_dict = {}
for s, n in zip(sc, nb):
if s >= threshold:
b_dict.update(init_dict(n, s))
a_dict[input_list[idx]] = b_dict
idx += 1
return a_dict
both A and B are numpy.ndarray
.
For example, one of the optimizations I tried was to avoid the function call to init_dict(n,s) and directly update the b_dict without needing having a function call and creating another dictionary inside it, return it and then update the b_dict, which helps a bit. But any more optimization to avoid two loops for example or using multiprocessing or threading?
A is something like this:
[[0.8921996 0.91602445 0.92908716 0.9417222 0.96200365]
[0.4753568 0.6385271 0.6559716 0.67830306 0.7077361 ]
[0.700236 0.75287104 0.7589616 0.7638799 0.77096677]
....
]
and B is:
[[682506892 693571174 668887658 303551993 27694382]
[ 15028940 14862639 54801234 14711873 15136693]
[567664619 217092797 399261625 124879790 349055820]
....
]
The returned value (a_dict), is something like this:
{
'147840198': {
'567664619': 0.7002360224723816, '217092797': 0.752871036529541,
'399261625': 0.7589616179466248, '124879790': 0.7638798952102661,
'349055820': 0.7709667682647705
},
'485045174': {
'627320584': 0.24876028299331665, '297801439': 0.3101433217525482,
'166126424': 0.3392677307128906, '579653715': 0.3781401515007019,
'880315906': 0.40654435753822327
},
'39703998': {
'273891679': 0.667972981929779, '972073794': 0.8249127864837646,
'17236820': 0.8573702573776245, '675493278': 0.8575121164321899,
'163042687': 0.8683345317840576
},
'55375077': {
'14914733': 0.7121858596801758, '28645587': 0.7306985259056091,
'14914719': 0.7347514629364014, '15991986': 0.7463902831077576,
'14914756': 0.7500130534172058
},
.....
}
_init_dict(n,s)
is a function that gets n and s as key and value, respectively and returns a dictionary. As I mentioned, earlier, that step is not needed and we can directly use n and s, as key-value pair for b_dict.
threshold
can be a number between zero and one and input_list
is a list of strings such as bellow:
['147840198', '485045174', '39703998', '55375077', ....]
Ok, so given that the sub-lists in A are sorted, this collapses down pretty quickly. Anytime you are looking for a threshold within a sorted list, looping is a BAD idea. Bisection search is usually the weapon of choice.
Here are a couple (progressively better) variations on your code. chopper3()
gets this down to a 1-liner with a dictionary comprehension
from bisect import bisect_left
def chopper(output_keys, A, B, threshold):
a_dict = {}
for idx, (sc, nb) in enumerate(zip(A, B)):
b_dict = {}
chop_idx = bisect_left(sc, threshold)
a_dict[output_keys[idx]] = {k:v for k,v in zip(nb[chop_idx:], sc[chop_idx:])}
return a_dict
def chopper2(output_keys, A, B, threshold):
chop_idx = [bisect_left(a, threshold) for a in A]
res = {output_key: dict(zip(k[chop_idx:], v[chop_idx:])) for
output_key, v, k, chop_idx in zip(output_keys, A, B, chop_idx)}
return res
def chopper3(output_keys, A, B, threshold):
return {output_key: dict(zip(k[chop_idx:], v[chop_idx:]))
for output_key, v, k in zip(output_keys, A, B)
for chop_idx in (bisect_left(v, threshold),)}
A = [ [0.50, 0.55, 0.70, 0.80],
[0.61, 0.71, 0.81, 0.91],
[0.40, 0.41, 0.42, 0.43]]
B = [ [123, 456, 789, 1011],
[202, 505, 30, 400],
[90, 80, 70, 600]]
output_keys = list('ABC')
print (chopper(output_keys, A, B, 0.55))
print (chopper2(output_keys, A, B, 0.55))
print (chopper3(output_keys, A, B, 0.55))
{'A': {456: 0.55, 789: 0.7, 1011: 0.8}, 'B': {202: 0.61, 505: 0.71, 30: 0.81, 400: 0.91}, 'C': {}}
{'A': {456: 0.55, 789: 0.7, 1011: 0.8}, 'B': {202: 0.61, 505: 0.71, 30: 0.81, 400: 0.91}, 'C': {}}
{'A': {456: 0.55, 789: 0.7, 1011: 0.8}, 'B': {202: 0.61, 505: 0.71, 30: 0.81, 400: 0.91}, 'C': {}}
[Finished in 0.0s]