So, here is a sample code for the domain adaptation model, and all I want to do is to save the model and load it,
@tf.custom_gradient
def grad_reverse(x):
y = tf.identity(x)
def custom_grad(dy):
return -dy
return y, custom_grad
class GradReverse(tf.keras.layers.Layer):
def __init__(self):
super().__init__(name="grl")
def call(self, x):
return grad_reverse(x)
def get_adaptable_network(input_shape=x_source_train.shape[1:]):
inputs = Input(shape=input_shape)
x = Conv2D(32, 5, padding='same', activation='relu', name='conv2d_1')(inputs)
x = MaxPool2D(pool_size=2, strides=2, name='max_pooling2d_1')(x)
x = Conv2D(48, 5, padding='same', activation='relu', name='conv2d_2')(x)
x = MaxPool2D(pool_size=2, strides=2, name='max_pooling2d_2')(x)
features = Flatten(name='flatten_1')(x)
x = Dense(100, activation='relu', name='dense_digits_1')(features)
x = Dense(100, activation='relu', name='dense_digits_2')(x)
digits_classifier = Dense(10, activation="softmax", name="digits_classifier")(x)
domain_branch = Dense(100, activation="relu", name="dense_domain")(GradReverse()(features))
domain_classifier = Dense(1, activation="sigmoid", name="domain_classifier")(domain_branch)
return Model(inputs=inputs, outputs=[digits_classifier, domain_classifier])
model = get_adaptable_network()
model.summary()
# download the model in computer for later use
model.save('DA_MNIST_to_MNIST_m.h5')
from tensorflow import keras
model = keras.models.load_model('DA_MNIST_to_MNIST_m.h5',custom_objects={'?':? })
I am not sure what to put on the custom_objects part, since there is a custom gradient reversal layer implemented for domain adaptation in tensorflow. When I do load the model, it gives an error:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/utils/generic_utils.py in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
294 cls = get_registered_object(class_name, custom_objects, module_objects)
295 if cls is None:
--> 296 raise ValueError('Unknown ' + printable_module_name + ': ' + class_name)
297
298 cls_config = config['config']
ValueError: Unknown layer: GradReverse
I am doing MNIST to MNIST_M domain adaptation, and any help would be useful!
I figured it out, I needed to change the GradReverse layer's init function with **kwargs, This object will then accept any other keyword argument that i haven't included.
class GradReverse(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super().__init__(name="grl")
def call(self, x):
return grad_reverse(x)
In load model, we can use this,
from tensorflow import keras
model = keras.models.load_model('DA_MNIST_to_MNIST_m.h5',custom_objects={'GradReverse':GradReverse})