what neural network is used in this generative models code?
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(16, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(16))
assert model.output_shape == (None,16 ) # Note: None is the batch size
model.add(layers.Dense(32)) # what does 32 denote here
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(32))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(32))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(8))
assert model.output_shape == (None,8 )
return model
this is a code based on the generative adversarial network model. i have a discriminator model also but I need to find out if this generative model is using cnn or lstm or other algorithm to create the generate model.
I think its CNN , If u put your full code it may easy to find
Batch Normalisation maximum used in conventional Neural network only