I'm trying to get some heatmaps from a computervision model that's it's already working to classify images but I'm finding some difficulties. This is the model summary:
model.summary()
Model: "model_4"
Layer (type) Output Shape Param #
=================================================================
input_9 (InputLayer) [(None, 512, 512, 1)] 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 512, 512, 3) 30
_________________________________________________________________
densenet121 (Functional) (None, 1024) 7037504
_________________________________________________________________
dense_4 (Dense) (None, 100) 102500
_________________________________________________________________
dropout_4 (Dropout) (None, 100) 0
_________________________________________________________________
predictions (Dense) (None, 2) 202
=================================================================
Total params: 7,140,236
Trainable params: 7,056,588
Non-trainable params: 83,648
As part of the standard procces to create a heatmap, I know I have to acces to the last convolutional layer in the model, that in this case I'll say it's a layer inside the Densenet121, but I can not find a way to access to all the layers belonging to densenet121.
Right now, I've been using conv2d_4 layer to run some tests, but I feel is not the right way because that layer is before all the Transfer learning work from densenet.
Also, I just looked up for Funcitnal layers in KErar official documentation but I cound't find it, so I guess it's not a layer, it's like the hole densenet model embedded there, but I can not find a way to access.
By the way, here I share the model construction because it may help to answer this:
from tensorflow.keras.applications.densenet import DenseNet121
num_classes = 2
input_tensor = Input(shape=(IMG_SIZE,IMG_SIZE,1))
x = Conv2D(3,(3,3), padding='same')(input_tensor)
x = DenseNet121(include_top=False, classes=2, pooling="avg", weights="imagenet")(x)
x = Dense(100)(x)
x = Dropout(0.45)(x)
predictions = Dense(num_classes, activation='softmax', name="predictions")(x)
model = Model(inputs=input_tensor, outputs=predictions)
I found you can use
.get_layer()
twice to acces layers inside functional densenet model embebeed in the "main" model.
In this case I can use model.get_layer('densenet121').summary()
to check all thje layer inside the embebeed model, and then use them with this code: model.get_layer('densenet121').get_layer('xxxxx')