I am new to cublas. I want to calculate the inverse of two matrices in parallel on a GPU. The matrices are [4 8;3 9] and [5 2;1 7]. Is it possible to do so using cublasSgetriBatched? Here is my code, I am getting incorrect result with this. Here I took 2x2 matrices, but I want to find a way to solve this problem for multiple mxm matices.
#include <stdio.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "cublas_v2.h"
int main() {
const unsigned int N = 2;
const unsigned int Nmatrices = 2;
cublasHandle_t handle;
cublasCreate(&handle);
// --- Matrices to be inverted
float *h_A = new float[N*N*Nmatrices];
float *r_A = new float[N*N*Nmatrices];//result
h_A[0] = 4.f;
h_A[1] = 3.f;
h_A[2] = 8.f;
h_A[3] = 9.f;
h_A[4] = 5.f;
h_A[5] = 1.f;
h_A[6] = 2.f;
h_A[7] = 7.f;
// --- Allocate device matrices
float *d_A; cudaMalloc((void**)&d_A, N*N*Nmatrices*sizeof(float));
float *c_A; cudaMalloc((void**)&c_A, N*N*Nmatrices*sizeof(float));
// --- Move the matrix to be inverted from host to device
cudaMemcpy(d_A,h_A,N*N*Nmatrices*sizeof(float),cudaMemcpyHostToDevice);
// --- Creating the array of pointers needed as input to the batched getrf
float **h_inout_pointers = (float **)malloc(Nmatrices*sizeof(float *));
//for (int i=0; i<Nmatrices; i++) h_inout_pointers[i]=(float *)((char*)d_A+i*((size_t)N*N)*sizeof(float));
*h_inout_pointers=d_A;
float **d_inout_pointers;
cudaMalloc((void**)&d_inout_pointers, Nmatrices*sizeof(float *));
cudaMemcpy(d_inout_pointers,h_inout_pointers,Nmatrices*sizeof(float *),cudaMemcpyHostToDevice);
//free(h_inout_pointers);
float **r_inout_pointers = (float **)malloc(Nmatrices*sizeof(float *));
//for (int i=0; i<Nmatrices; i++) h_inout_pointers[i]=(float *)((char*)d_A+i*((size_t)N*N)*sizeof(float));
*r_inout_pointers=c_A;
float **rd_inout_pointers;
cudaMalloc((void**)&rd_inout_pointers, Nmatrices*sizeof(float *));
cudaMemcpy(rd_inout_pointers,r_inout_pointers,Nmatrices*sizeof(float *),cudaMemcpyHostToDevice);
int *d_PivotArray; cudaMalloc((void**)&d_PivotArray, N*Nmatrices*sizeof(int));
int *d_InfoArray; cudaMalloc((void**)&d_InfoArray, Nmatrices*sizeof(int));
int *h_PivotArray = (int *)malloc(N*Nmatrices*sizeof(int));
int *h_InfoArray = (int *)malloc( Nmatrices*sizeof(int));
cublasSgetrfBatched(handle, N, d_inout_pointers, N, d_PivotArray, d_InfoArray, Nmatrices);
//cublasSafeCall(cublasSgetrfBatched(handle, N, d_inout_pointers, N, NULL, d_InfoArray, Nmatrices));
//gpuErrchk(cudaMemcpy(h_InfoArray,d_InfoArray,Nmatrices*sizeof(int),cudaMemcpyDeviceToHost));
cublasSgetriBatched(handle, N, d_inout_pointers, N, d_PivotArray, rd_inout_pointers, N, d_InfoArray,
Nmatrices);
cudaMemcpy(h_A,d_A,N*N*sizeof(float),cudaMemcpyDeviceToHost);
cudaMemcpy(r_A,c_A,N*N*sizeof(float),cudaMemcpyDeviceToHost);
//gpuErrchk(cudaMemcpy(h_PivotArray,d_PivotArray,N*Nmatrices*sizeof(int),cudaMemcpyDeviceToHost));
for (int i=0; i<N*N*Nmatrices; i++) printf("A[%i]=%f\n", i, r_A[i]);
return 0;
}
You have at least 3 usage problems with your code:
d_A
correctly.c_A
correctly.cudaMemcpy
statement for r_A
is only transferring one matrix worth of data (N*N).The following code has the items fixed, and runs without runtime error, producing non-zero results. If you think those results are wrong, you should indicate why and what you think the correct results should be.
#include <stdio.h>
#include <cublas_v2.h>
int main() {
const unsigned int N = 2;
const unsigned int Nmatrices = 2;
cublasHandle_t handle;
cublasCreate(&handle);
// --- Matrices to be inverted
float *h_A = new float[N*N*Nmatrices];
float *r_A = new float[N*N*Nmatrices];//result
h_A[0] = 4.f;
h_A[1] = 3.f;
h_A[2] = 8.f;
h_A[3] = 9.f;
h_A[4] = 5.f;
h_A[5] = 1.f;
h_A[6] = 2.f;
h_A[7] = 7.f;
// --- Allocate device matrices
float *d_A; cudaMalloc((void**)&d_A, N*N*Nmatrices*sizeof(float));
float *c_A; cudaMalloc((void**)&c_A, N*N*Nmatrices*sizeof(float));
// --- Move the matrix to be inverted from host to device
cudaMemcpy(d_A,h_A,N*N*Nmatrices*sizeof(float),cudaMemcpyHostToDevice);
// --- Creating the array of pointers needed as input to the batched getrf
float **h_inout_pointers = (float **)malloc(Nmatrices*sizeof(float *));
//for (int i=0; i<Nmatrices; i++) h_inout_pointers[i]=(float *)((char*)d_A+i*((size_t)N*N)*sizeof(float));
h_inout_pointers[0]=d_A;
h_inout_pointers[1]=d_A+N*N;
float **d_inout_pointers;
cudaMalloc((void**)&d_inout_pointers, Nmatrices*sizeof(float *));
cudaMemcpy(d_inout_pointers,h_inout_pointers,Nmatrices*sizeof(float *),cudaMemcpyHostToDevice);
//free(h_inout_pointers);
float **r_inout_pointers = (float **)malloc(Nmatrices*sizeof(float *));
//for (int i=0; i<Nmatrices; i++) h_inout_pointers[i]=(float *)((char*)d_A+i*((size_t)N*N)*sizeof(float));
r_inout_pointers[0]=c_A;
r_inout_pointers[1]=c_A+N*N;
float **rd_inout_pointers;
cudaMalloc((void**)&rd_inout_pointers, Nmatrices*sizeof(float *));
cudaMemcpy(rd_inout_pointers,r_inout_pointers,Nmatrices*sizeof(float *),cudaMemcpyHostToDevice);
int *d_PivotArray; cudaMalloc((void**)&d_PivotArray, N*Nmatrices*sizeof(int));
int *d_InfoArray; cudaMalloc((void**)&d_InfoArray, Nmatrices*sizeof(int));
int *h_PivotArray = (int *)malloc(N*Nmatrices*sizeof(int));
int *h_InfoArray = (int *)malloc( Nmatrices*sizeof(int));
cublasSgetrfBatched(handle, N, d_inout_pointers, N, d_PivotArray, d_InfoArray, Nmatrices);
//cublasSafeCall(cublasSgetrfBatched(handle, N, d_inout_pointers, N, NULL, d_InfoArray, Nmatrices));
//gpuErrchk(cudaMemcpy(h_InfoArray,d_InfoArray,Nmatrices*sizeof(int),cudaMemcpyDeviceToHost));
cublasSgetriBatched(handle, N, d_inout_pointers, N, d_PivotArray, rd_inout_pointers, N, d_InfoArray,
Nmatrices);
cudaMemcpy(h_A,d_A,N*N*sizeof(float),cudaMemcpyDeviceToHost);
cudaMemcpy(r_A,c_A,Nmatrices*N*N*sizeof(float),cudaMemcpyDeviceToHost);
//gpuErrchk(cudaMemcpy(h_PivotArray,d_PivotArray,N*Nmatrices*sizeof(int),cudaMemcpyDeviceToHost));
for (int i=0; i<N*N*Nmatrices; i++) printf("A[%i]=%f\n", i, r_A[i]);
return 0;
}
$ nvcc -o t133 t133.cu -lcublas
$ cuda-memcheck ./t133
========= CUDA-MEMCHECK
A[0]=0.750000
A[1]=-0.250000
A[2]=-0.666667
A[3]=0.333333
A[4]=0.212121
A[5]=-0.030303
A[6]=-0.060606
A[7]=0.151515
========= ERROR SUMMARY: 0 errors
$
(FWIW I believe the results are correct, testing against the calculator here)