I am trying to find a pythonic way to calculate the Hermitian adjacency matrix in Python and I'm really struggling. The definition of a Hermitian Adjacency matrix is shown in this image:
It works as follows. Lets say we have two nodes named i
and j
. If there is an directed edge going from both i to j
and j to i
, then the corresponding matrix value at location [ i, j ] should be set to 1. If there is only a directed edge from i to j
, then the matrix element at location [i, j] should be set to +i. And if there is only a directed edge from j to i
then the matrix element at location [i, j] should be set to -i. All other matrix values are set to 0.
I cannot figure out a smart way to make this Hermitian Adjacency Matrix that doesn't involve iterating through my nodes one by one. Any advice?
I don't think there's a built-in for this, so I've cobbled together my own vectorised solution:
import numpy as np
import networkx as nx
# Create standard adjacency matrix
A = nx.linalg.graphmatrix.adjacency_matrix(G).toarray()
# Add to its transpose and convert from sparse array
B = A + A.T
# Get row index matrix
I = np.indices(B.shape)[0] + 1
# Apply vectorised formula to get Hermitian adjacency matrix
H = np.multiply(B/2 * (2*I)**(B%2), 2*A-1).astype(int)
Let's start with a directed graph:
We start by creating the normal adjacency matrix using nx.linalg.graphmatrix.adjacency_matrix()
, giving us the following matrix:
>>> A = nx.linalg.graphmatrix.adjacency_matrix(G).toarray()
[[1, 1, 0, 1, 0, 1, 0, 0],
[1, 0, 0, 1, 0, 0, 1, 0],
[1, 1, 1, 1, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 1, 0, 1, 1],
[0, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0]]
We can then add this matrix to its transpose, giving us 2
in every location where there is a directed edge going from i to j
and vice-versa, a 1
in every location where only one of these edges exists, and a 0
in every location where no edge exists:
>>> B = A + A.T
>>> B
[[2, 2, 1, 1, 1, 2, 0, 0],
[2, 0, 1, 2, 0, 1, 2, 0],
[1, 1, 2, 1, 0, 1, 0, 0],
[1, 2, 1, 0, 1, 0, 0, 0],
[1, 0, 0, 1, 0, 1, 1, 1],
[2, 1, 1, 0, 1, 0, 1, 1],
[0, 2, 0, 0, 1, 1, 0, 1],
[0, 0, 0, 0, 1, 1, 1, 0]]
Now, we want to apply a function to the matrix so that 0
maps to 0
, 2
maps to 1
, and 1
maps to the row number i
. We can use np.indices()
to get the row number, and the following equation: x/2 * (2*i)**(x%2)
, where i
is the row number and x
is the element. Finally, we need to multiply elements in positions where no edge ij
exists by -1
. This can be vectorised as follows:
>>> I = np.indices(B.shape)[0] + 1
>>> H = np.multiply(B/2 * (2*I)**(B%2), 2*A-1).astype(int)
>>> H
[[ 1, 1, -1, 1, -1, 1, 0, 0],
[ 1, 0, -2, 1, 0, -2, 1, 0],
[ 3, 3, 1, 3, 0, 3, 0, 0],
[-4, 1, -4, 0, -4, 0, 0, 0],
[ 5, 0, 0, 5, 0, -5, -5, -5],
[ 1, 6, -6, 0, 6, 0, 6, 6],
[ 0, 1, 0, 0, 7, -7, 0, 7],
[ 0, 0, 0, 0, 8, -8, -8, 0]]
As required.
We can check that this is correct by using a naïve iterate-through-nodes approach:
>>> check = np.zeros([8,8])
>>> for i in G.nodes:
for j in G.nodes:
if (i, j) in G.edges:
if (j, i) in G.edges:
check[i-1, j-1] = 1
else:
check[i-1, j-1] = i
else:
if (j, i) in G.edges:
check[i-1, j-1] = -i
else:
check[i-1, j-1] = 0
>>> (check == H).all()
True