I'm trying to extract data like input layers, output layers and their shapes from an onnx model. I know there is python interface to do this. I want to do something similar to this code but in c++. I have also pasted the code from the link. I have tried it in python and it has worked for me. I want to know if there are c++ API's to do the same.
import onnx
model = onnx.load(r"model.onnx")
# The model is represented as a protobuf structure and it can be accessed
# using the standard python-for-protobuf methods
# iterate through inputs of the graph
for input in model.graph.input:
print (input.name, end=": ")
# get type of input tensor
tensor_type = input.type.tensor_type
# check if it has a shape:
if (tensor_type.HasField("shape")):
# iterate through dimensions of the shape:
for d in tensor_type.shape.dim:
# the dimension may have a definite (integer) value or a symbolic identifier or neither:
if (d.HasField("dim_value")):
print (d.dim_value, end=", ") # known dimension
elif (d.HasField("dim_param")):
print (d.dim_param, end=", ") # unknown dimension with symbolic name
else:
print ("?", end=", ") # unknown dimension with no name
else:
print ("unknown rank", end="")
print()
Also I'm new to c++, please help me with the same.
ONNX format is essentially a protobuf, so it can be opened in any language protoc compiler supports.
In case of C++
protoc --cpp_out=. onnx.proto3
command. It will generate onnx.proto3.pb.cc
and onnx.proto3.pb.h
files#include <fstream>
#include <cassert>
#include "onnx.proto3.pb.h"
void print_dim(const ::onnx::TensorShapeProto_Dimension &dim)
{
switch (dim.value_case())
{
case onnx::TensorShapeProto_Dimension::ValueCase::kDimParam:
std::cout << dim.dim_param();
break;
case onnx::TensorShapeProto_Dimension::ValueCase::kDimValue:
std::cout << dim.dim_value();
break;
default:
assert(false && "should never happen");
}
}
void print_io_info(const ::google::protobuf::RepeatedPtrField< ::onnx::ValueInfoProto > &info)
{
for (auto input_data: info)
{
auto shape = input_data.type().tensor_type().shape();
std::cout << " " << input_data.name() << ":";
std::cout << "[";
if (shape.dim_size() != 0)
{
int size = shape.dim_size();
for (int i = 0; i < size - 1; ++i)
{
print_dim(shape.dim(i));
std::cout << ", ";
}
print_dim(shape.dim(size - 1));
}
std::cout << "]\n";
}
}
int main(int argc, char **argv)
{
std::ifstream input("mobilenet.onnx", std::ios::ate | std::ios::binary); // open file and move current position in file to the end
std::streamsize size = input.tellg(); // get current position in file
input.seekg(0, std::ios::beg); // move to start of file
std::vector<char> buffer(size);
input.read(buffer.data(), size); // read raw data
onnx::ModelProto model;
model.ParseFromArray(buffer.data(), size); // parse protobuf
auto graph = model.graph();
std::cout << "graph inputs:\n";
print_io_info(graph.input());
std::cout << "graph outputs:\n";
print_io_info(graph.output());
return 0;
}