*Update: The answer suggested by Rui is great and works as it should. However, when I run it on about 7 million observations (my actual dataset), R gets stuck in a computational block (I'm using a machine with 64gb of RAM). Any other solutions are greatly appreciated!
I have a dataframe of patents consisting of the firms, application years, patent number, and patent classes. I want to calculate the Euclidean distance between consecutive years for each firm based on patent classes according to the following formula:
Where Xi represents the number of patents belonging to a specific class in year t, and Yi represents the number of patents belonging to a specific class in the previous year (t-1).
To further illustrate this, consider the following dataset:
df <- data.table(Firm = rep(c(LETTERS[1:2]),each=6), Year = rep(c(1990,1990,1991,1992,1992,1993),2),
Patent_Number = sample(184785:194785,12,replace = FALSE),
Patent_Class = c(12,5,31,12,31,6,15,15,15,3,3,1))
> df
Firm Year Patent_Number Patent_Class
1: A 1990 192473 12
2: A 1990 193702 5
3: A 1991 191889 31
4: A 1992 193341 12
5: A 1992 189512 31
6: A 1993 185582 6
7: B 1990 190838 15
8: B 1990 189322 15
9: B 1991 190620 15
10: B 1992 193443 3
11: B 1992 189937 3
12: B 1993 194146 1
Since year 1990 is the beginning year for Firm A, there is no Euclidean distance for that year (NAs should be produced. Moving forward to year 1991, the distinct classses for this year (1991) and the previous year (1990) are 31, 5, and 12. Therefore, the above formula is summed over these three distinct classes (there is three distinc 'i's). So the formula's output will be:
Following the same calculation and reiterating over firms, the final output should be:
> df
Firm Year Patent_Number Patent_Class El_Dist
1: A 1990 192473 12 NA
2: A 1990 193702 5 NA
3: A 1991 191889 31 1.2247450
4: A 1992 193341 12 0.7071068
5: A 1992 189512 31 0.7071068
6: A 1993 185582 6 1.2247450
7: B 1990 190838 15 NA
8: B 1990 189322 15 NA
9: B 1991 190620 15 0.5000000
10: B 1992 193443 3 1.1180340
11: B 1992 189937 3 1.1180340
12: B 1993 194146 1 1.1180340
I'm preferably looking for a data.table solution for speed purposes.
Thank you very much in advance for any help.
I believe that the function below does what the question asks for, but the results for Firm == "B"
are not equal to the question's.
fEl_Dist <- function(X){
Year <- X[["Year"]]
PatentClass <- X[["Patent_Class"]]
sapply(seq_along(Year), function(i){
j <- which(Year %in% (Year[i] - 1:0))
tbl <- table(Year[j], PatentClass[j])
if(NROW(tbl) == 1){
NA_real_
} else {
numer <- sum((tbl[2, ] - tbl[1, ])^2)
denom <- sum(tbl[2, ]^2)*sum(tbl[1, ]^2)
sqrt(numer/denom)
}
})
}
setDT(df)[, El_Dist := fEl_Dist(.SD),
by = .(Firm),
.SDcols = c("Year", "Patent_Class")]
head(df)
# Firm Year Patent_Number Patent_Class El_Dist
#1: A 1990 190948 12 NA
#2: A 1990 186156 5 NA
#3: A 1991 190801 31 1.2247449
#4: A 1992 185226 12 0.7071068
#5: A 1992 185900 31 0.7071068
#6: A 1993 186928 6 1.2247449