I've been following tutorials in Pytorch that use datasets from Pytorch that allow you to enable whether you'd like to train using the data or not... But now I'm using a .csv and a custom dataset.
class MyDataset(Dataset):
def __init__(self, root, n_inp):
self.df = pd.read_csv(root)
self.data = self.df.to_numpy()
self.x , self.y = (torch.from_numpy(self.data[:,:n_inp]),
torch.from_numpy(self.data[:,n_inp:]))
def __getitem__(self, idx):
return self.x[idx, :], self.y[idx,:]
def __len__(self):
return len(self.data)
How can I tell Pytorch not to train my test_dataset so I can use it as a reference of how accurate my model is?
train_dataset = MyDataset("heart.csv", input_size)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle =True)
test_dataset = MyDataset("heart.csv", input_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle =True)
In pytorch, a custom dataset inherits the class Dataset
. Mainly it contains two methods __len__()
is to specify the length of your dataset object to iterate over and __getitem__()
to return a batch of data at a time.
Once the dataloader objects are initialized (train_loader
and test_loader
as specified in your code), you need to write a train loop and a test loop.
def train(model, optimizer, loss_fn, dataloader):
model.train()
for i, (input, gt) in enumerate(dataloader):
if params.use_gpu: #(If training using GPU)
input, gt = input.cuda(non_blocking = True), gt.cuda(non_blocking = True)
predicted = model(input)
loss = loss_fn(predicted, gt)
optimizer.zero_grad()
loss.backward()
optimizer.step()
and your test loop should be:
def test(model,loss_fn, dataloader):
model.eval()
for i, (input, gt) in enumerate(dataloader):
if params.use_gpu: #(If training using GPU)
input, gt = input.cuda(non_blocking = True), gt.cuda(non_blocking = True)
predicted = model(input)
loss = loss_fn(predicted, gt)
In additional you can use metrics dictionary to log your predicted, loss, epochs etc,. The main difference between training and test loop is that we exclude back propagation (zero_grad(), backward(), step()
) in inference stage.
Finally,
for epoch in range(1, epochs + 1):
train(model, optimizer, loss_fn, train_loader)
test(model, loss_fn, test_loader)