I am doing image classification by following this TensorFlow tutorial and loading my own dataset from Gdrive. Now I want to plot the confusion matrix. First, I predicted labels for the validation dataset:
val_preds = model.predict(val_ds)
but I am not sure how to get original labels to compare the prediction to them. I have tried different methods but I got very low accuracy so I know labels are not what they should be.
val_ds_labels = np.concatenate([y for x, y in val_ds], axis=0)
This gives me an accuracy of 0.067 while the below gives me an accuracy of around .70.
epochs = 10
history=model.fit(train_ds, epochs=epochs, validation_data=val_ds)
Here is how I created the validation and training dataset:
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
"images",
validation_split=0.2,
subset="training",
seed=123,
image_size=image_size,
batch_size=batch_size,
label_mode='int'
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
"images",
validation_split=0.2,
subset="validation",
seed=123,
image_size=image_size,
batch_size=batch_size,
label_mode='int'
)
train_ds = train_ds.prefetch(buffer_size=32)
val_ds = val_ds.prefetch(buffer_size=32)
Then created the model and compile it:
model.compile(
optimizer=keras.optimizers.Adam(),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseTopKCategoricalAccuracy(k=1)],
)
and fit
epochs = 10
history=model.fit(train_ds, epochs=epochs, validation_data=val_ds)
I have 22 labels.
val_preds = model.predict(val_ds)
After training, get the true labels of the validation set as follows:
epochs=5
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
....
....
Epoch 4/5
20ms/step - loss: 0.6368 - accuracy: 0.7613 - val_loss: 0.9294 - val_accuracy: 0.6185
Epoch 5/5
20ms/step - loss: 0.4307 - accuracy: 0.8531 - val_loss: 0.9552 - val_accuracy: 0.6635
# get the labels
predictions = np.array([])
labels = np.array([])
for x, y in val_ds:
predictions = np.concatenate([predictions, np.argmax(model.predict(x), axis=-1)])
labels = np.concatenate([labels, y.numpy()])
predictions[:10]
array([0., 4., 3., 0., 3., 4., 2., 4., 4., 0.])
labels[:10]
array([0., 4., 3., 0., 3., 4., 1., 2., 4., 0.])
m = tf.keras.metrics.Accuracy()
m(labels, predictions).numpy()
# 0.66348773