When you assign the tokenizer in spacy's (v3.0.5) english language model en_core_web_sm
its own default tokenizer it changes its behaviour.
You would expect no change, but it silently fails. Why is this?
Code to reproduce:
import spacy
text = "don't you're i'm we're he's"
# No tokenizer assignment, everything is fine
nlp = spacy.load('en_core_web_sm')
doc = nlp(text)
[t.lemma_ for t in doc]
>>> ['do', "n't", 'you', 'be', 'I', 'be', 'we', 'be', 'he', 'be']
# Default Tokenizer assignent, tokenization and therefore lemmatization fails
nlp = spacy.load('en_core_web_sm')
nlp.tokenizer = spacy.tokenizer.Tokenizer(nlp.vocab)
doc = nlp(text)
[t.lemma_ for t in doc]
>>> ["don't", "you're", "i'm", "we're", "he's"]
To create a true default tokenizer it is necessary to pass all defaults to the tokenizer class, not just the vocab:
from spacy.util import compile_prefix_regex, compile_suffix_regex, compile_infix_regex
rules = nlp.Defaults.tokenizer_exceptions
infix_re = compile_infix_regex(nlp.Defaults.infixes)
prefix_re = compile_prefix_regex(nlp.Defaults.prefixes)
suffix_re = compile_suffix_regex(nlp.Defaults.suffixes)
tokenizer = spacy.tokenizer.Tokenizer(
nlp.vocab,
rules = rules,
prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
)