Search code examples
assemblyrustx86-64reverse-engineering

How to read the assembly code of this piece of Rust code?


I am trying to read a piece of Rust assembly code, but actually, it's harder to read than the ASM code generated by the C/C++ compiler. So, how to analyze the ASM code of the below piece of Rust code?

fn main() { 
    let closure = |x| println!("{}", x);
    let x: fn(x: i32) -> () = closure; 
    println!("{}", x as i32);
}

The corresponding assembly code like below with some comments (I only pasted the main part, for full version please use this Permalink: https://play.rust-lang.org/?version=nightly&mode=release&edition=2018&gist=e7ba4844f1ce6e881912dc074152988d):

playground::main: # @playground::main
# %bb.0:
    subq    $72, %rsp
    leaq    core::ops::function::FnOnce::call_once(%rip), %rax
    movl    %eax, 4(%rsp)
    leaq    4(%rsp), %rax
    movq    %rax, 8(%rsp)
    movq    core::fmt::num::imp::<impl core::fmt::Display for i32>::fmt@GOTPCREL(%rip), %rax
    movq    %rax, 16(%rsp)
    leaq    .L__unnamed_2(%rip), %rax  # the contents of rdx come from .L__unnamed_2(%rip), how to evaluate this part?
    movq    %rax, 24(%rsp)  # the contents of rdi come from rax.
    movq    $2, 32(%rsp)
    movq    $0, 40(%rsp)
    leaq    8(%rsp), %rax
    movq    %rax, 56(%rsp)
    movq    $1, 64(%rsp)
    leaq    24(%rsp), %rdi  # rdi should be the register holding the value passed to println!.
    callq   *std::io::stdio::_print@GOTPCREL(%rip)
    addq    $72, %rsp
    retq
                                        # -- End function

main:                                   # @main
# %bb.0:
    subq    $8, %rsp
    movq    %rsi, %rcx
    movslq  %edi, %rdx
    leaq    playground::main(%rip), %rax
    movq    %rax, (%rsp)
    leaq    .L__unnamed_1(%rip), %rsi
    movq    %rsp, %rdi
    callq   *std::rt::lang_start_internal@GOTPCREL(%rip)
                                        # kill: def $eax killed $eax killed $rax
    popq    %rcx
    retq
                                        # -- End function

.L__unnamed_1:
    .quad   core::ptr::drop_in_place<std::rt::lang_start<()>::{{closure}}>
    .quad   8                               # 0x8
    .quad   8                               # 0x8
    .quad   std::rt::lang_start::{{closure}}
    .quad   std::rt::lang_start::{{closure}}
    .quad   core::ops::function::FnOnce::call_once{{vtable.shim}}

.L__unnamed_3:

.L__unnamed_4:
    .byte   10

.L__unnamed_2:
    .quad   .L__unnamed_3
    .zero   8
    .quad   .L__unnamed_4
    .asciz  "\001\000\000\000\000\000\000"

And, I am trying to find how the Rust compiler treats the function pointer of closure versus normal function. So, here I tried to use a closure as an example but seems I cannot find any valid assembly code that corresponds to the use of the variable "x".


Solution

  • There is no actual call to the closure, so no invocation code has been produced, but the use of the x variable is actually in a function not included in your post which has the misleading name of core::ops::function::FnOnce::call_once in the ASM output, but has the much more mangled name of @_ZN4core3ops8function6FnOnce9call_once17hefa1aa47132c4122E in the LLVM output of the same playground example. This is the actual contents of the closure (the println!("{}", x))

    core::ops::function::FnOnce::call_once: # @core::ops::function::FnOnce::call_once
    # %bb.0:
     # allocate a bunch of stack space for variables and print arguments
     subq   $72, %rsp
    
     # %edi has the value of x passed in to the closure, which we store in a new stack allocated variable
     movl   %edi, 4(%rsp)
    
     # we then load the address of that variable into another variable
     leaq   4(%rsp), %rax
     movq   %rax, 8(%rsp)
    
     # the following is mostly populating the std::fmt::Arguments struct which is passed to print
     movq   core::fmt::num::imp::<impl core::fmt::Display for i32>::fmt@GOTPCREL(%rip), %rax
     movq   %rax, 16(%rsp)
     leaq   .L__unnamed_2(%rip), %rax
     movq   %rax, 24(%rsp)
     movq   $2, 32(%rsp)
     movq   $0, 40(%rsp)
    
     # the address of the address of x is loaded into the arguments struct here
     leaq   8(%rsp), %rax
     movq   %rax, 56(%rsp)
    
     # finish populating the arguments and then call print
     movq   $1, 64(%rsp)
     leaq   24(%rsp), %rdi
     callq  *std::io::stdio::_print@GOTPCREL(%rip)
     addq   $72, %rsp
     retq
    

    The playground main function is where the closure is created, but it's not actually called, and like the function above, is mostly populating the complex std::fmt::Arguments struct

    playground::main: # @playground::main
    # %bb.0:
    subq    $72, %rsp
    
     # this creates the closure by storing a pointer to the closure's function
    leaq    core::ops::function::FnOnce::call_once(%rip), %rax
    movl    %eax, 4(%rsp)
    
     # this stores the closure in main's `x` variable (line 3 of the example)
    leaq    4(%rsp), %rax
    movq    %rax, 8(%rsp)
    
     # populate the std::fmt::Arguments struct
    movq    core::fmt::num::imp::<impl core::fmt::Display for i32>::fmt@GOTPCREL(%rip), %rax
    movq    %rax, 16(%rsp)
    leaq    .L__unnamed_2(%rip), %rax  # the contents of rdx come from .L__unnamed_2(%rip), how to evaluate this part?
    movq    %rax, 24(%rsp)  # the contents of rdi come from rax.
    movq    $2, 32(%rsp)
    movq    $0, 40(%rsp)
    
     # store the closure (stored in `x`) in the std::fmt::Arguments struct
    leaq    8(%rsp), %rax
    movq    %rax, 56(%rsp)
    
     # finish populating and call print
    movq    $1, 64(%rsp)
    leaq    24(%rsp), %rdi  # rdi should be the register holding the value passed to println!.
    callq   *std::io::stdio::_print@GOTPCREL(%rip)
    addq    $72, %rsp
    retq
    

    From the LLVM output, the std::fmt::Arguments is defined as %"std::fmt::Arguments" = type { [0 x i64], { [0 x { [0 x i8]*, i64 }]*, i64 }, [0 x i64], { i64*, i64 }, [0 x i64], { [0 x { i8*, i64* }]*, i64 }, [0 x i64] } and I don't understand too many of the internal details, so I'm not sure exactly why it's referencing the the static memory area .L__unnamed_2 but digging into std::fmt::Arguments might give some more clues