I am using the following line to find if the rows of b
are in a
a[np.all(np.isin(a[:, 0:3], b[:, 0:3]), axis=1), 3]
The arrays have more entries along axis=1
, I only compare the first 3 entries and return the fourth entry (idx=3) of a
.
The possible error I realized is, that the order of the entries is not considered. Therefore, the following example for a
and b
:
a = np.array([[...],
[1, 2, 3, 1000],
[2, 1, 3, 2000],
[...]])
b = np.array([[1, 2, 3]])
would return [1000, 2000]
instead of the of only [1000]
.
How can I consider the order of the rows as well?
For small b
(less than 100 rows), try this instead:
a[(a[:, :3] == b[:, None]).all(axis=-1).any(axis=0)]
Example:
a = np.array([[1, 0, 5, 0],
[1, 2, 3, 1000],
[2, 1, 3, 2000],
[0, 0, 1, 1]])
b = np.array([[1, 2, 3], [0, 0, 1]])
>>> a[(a[:, :3] == b[:, None]).all(axis=-1).any(axis=0), 3]
array([1000, 1])
Explanation:
The key is to "distribute" equality tests for all rows of a
(the first 3 columns) to all rows of b
:
# on the example above
>>> a[:, :3] == b[:, None]
array([[[ True, False, False],
[ True, True, True], # <-- a[1,:3] matches b[0]
[False, False, True],
[False, False, False]],
[[False, True, False],
[False, False, False],
[False, False, False],
[ True, True, True]]]) # <-- a[3, :3] matches b[1]
Be warned that this can be large: the shape is (len(b), len(a), 3)
.
Then the first .all(axis=-1)
means that we want all entire rows to match:
>>> (a[:, :3] == b[:, None]).all(axis=-1)
array([[False, True, False, False],
[False, False, False, True]])
The final bit .any(axis=0)
means: "match any row in b
":
>>> (a[:, :3] == b[:, None]).all(axis=-1).any(axis=0)
array([False, True, False, True])
I.e.: "a[2, :3]
matches some row(s) of b
as well as a[3, :3]
".
Finally, use this as a mask in a
and take the column 3.
Note on performance
The technique above distributes equality for the product of the rows of a over the rows of b. This can be slow and use a large amount of memory if both a
and b
have many rows.
As an alternative, you may use set
membership in pure Python (without subsetting of columns --that can be done by the caller):
def py_rows_in(a, b):
z = set(map(tuple, b))
return [row in z for row in map(tuple, a)]
When b
has more than 50~100 rows, then this may be faster, compared to the np
version above, written here as a function:
def np_rows_in(a, b):
return (a == b[:, None]).all(axis=-1).any(axis=0)
import perfplot
fig, axes = plt.subplots(ncols=2, figsize=(16, 5))
plt.subplots_adjust(wspace=.5)
for ax, alen in zip(axes, [100, 10_000]):
a = np.random.randint(0, 20, (alen, 4))
plt.sca(ax)
ax.set_title(f'a: {a.shape[0]:_} rows')
perfplot.show(
setup=lambda n: np.random.randint(0, 20, (n, 3)),
kernels=[
lambda b: np_rows_in(a[:, :3], b),
lambda b: py_rows_in(a[:, :3], b),
],
labels=['np_rows_in', 'py_rows_in'],
n_range=[2 ** k for k in range(10)],
xlabel='len(b)',
)
plt.show()