I´m using a flatmap to parse a dataframe and it is working fine, but I´m not able to reshape the final result into a multiple-column dataset. How can I parse this RDD? This is a sample row of my result after the flatmap:
[Row(XXXX-XXXX-XXXX-XXXXX-XXXXXX={'m_ci_id': 'XXXX-XXXX-XXXX-XXXXX-XXXXXX', 'ci_id': 'XXXX-XXXX-XXXX-XXXXX-XXXXXX', 'pp_breaker_power_phase': 'L1_L2', 'pp_breaker_poles': 2, 'pp_breaker_panel_circuit_number': 2, 'cp_ci_id': None, 'cp_value': None, 'phase': 'L1', 'pole': 2})]
I´m passing a dataframe with the same columns that you see within the dict, and this is the function that I use with the flatmap:
def get_poles_phases(row):
"""
:param row:
:return:
"""
new_rows = []
initial_pole = row.pp_breaker_panel_circuit_number
phases = row.pp_breaker_power_phase.split('_')
for _ in range(row.pp_breaker_poles):
temp = row.asDict()
temp['phase'] = phases[_]
temp['pole'] = initial_pole
if row.cp_value != 'Phase Grouping':
initial_pole += 2
else:
logger.error('Panel configuration not recognized.')
new_rows.append(row(temp))
return new_rows
I tried with a schema of Structfields, but didn´t work
cols = [StructField('m_ci_id', StringType(), True),
StructField('ci_id', StringType(), True),
StructField('pp_breaker_power_phase', StringType(), True),
StructField('pp_breaker_poles', StringType(), True),
StructField('pp_breaker_panel_circuit_number', StringType(), True),
StructField('cp_ci_id', StringType(), True),
StructField('cp_value', StringType(), True),
StructField('phase', StringType(), True),
StructField('pole', StringType(), True)]
schema = StructType(cols)
poles_phases = poles_phases.toDF(schema)
I also tried with passing a list of column names.
poles_phases = poles_phases.toDF(['m_ci_id', 'ci_id', 'pp_breaker_power_phase', 'pp_breaker_poles', 'pp_breaker_panel_circuit_number', 'cp_ci_id', 'cp_value', 'phase', 'pole'])
I suspect this is not working because I'm getting an RDD with only one column, but I don't know how to parse that single dict out so the schema matches.
I figured it out:
from pyspark.sql import Row
poles_phases = poles_phases.map(lambda row: Row(**list(row.asDict().values())[0]))
this is building a new Row by unpacking the value dict. After that, you can use
poles_phases = poles_phases.toDF(['m_ci_id', 'ci_id', 'pp_breaker_power_phase', 'pp_breaker_poles', 'pp_breaker_panel_circuit_number', 'cp_ci_id', 'cp_value', 'phase', 'pole'])
If you have None
values the schema inference can fail, so you need to declare it explicitly e.g.,
cols = [StructField('m_ci_id', StringType(), True),
StructField('ci_id', StringType(), True),
StructField('pp_breaker_power_phase', StringType(), True),
StructField('pp_breaker_poles', StringType(), True),
StructField('pp_breaker_panel_circuit_number', StringType(), True),
StructField('cp_ci_id', StringType(), True),
StructField('cp_value', StringType(), True),
StructField('phase', StringType(), True),
StructField('pole', StringType(), True)]
schema = StructType(cols)
poles_phases = poles_phases.toDF(schema)