when I start my script it runs fine until it hits the traced_model.save(args.save_path) statement after that the script just stop running. Could someone please help me out with this?
import argparse
import torch
from model import SpeechRecognition
from collections import OrderedDict
def trace(model):
model.eval()
x = torch.rand(1, 81, 300)
hidden = model._init_hidden(1)
traced = torch.jit.trace(model, (x, hidden))
return traced
def main(args):
print("loading model from", args.model_checkpoint)
checkpoint = torch.load(args.model_checkpoint, map_location=torch.device('cpu'))
h_params = SpeechRecognition.hyper_parameters
model = SpeechRecognition(**h_params)
model_state_dict = checkpoint['state_dict']
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k.replace("model.", "") # remove `model.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
print("tracing model...")
traced_model = trace(model)
print("saving to", args.save_path)
traced_model.save(args.save_path)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="testing the wakeword engine")
parser.add_argument('--model_checkpoint', type=str, default='your/checkpoint_file', required=False,
help='Checkpoint of model to optimize')
parser.add_argument('--save_path', type=str, default='path/where/you/want/to/save/the/model', required=False,
help='path to save optmized model')
args = parser.parse_args()
main(args)
If you start the script you can even see where it stops working because print("Done!")
is not executed.
Here is what it looks in the terminal when I run the script:
loading model from C:/Users/supre/Documents/Python Programs/epoch=0-step=11999.ckpt
tracing model...
saving to C:/Users/supre/Documents/Python Programs
According to the PyTorch documentation, a common PyTorch convention is to save models using either a .pt or .pth file extension.
To save model checkpoints or multiple components, organize them in a dictionary and use torch.save()
to serialize the dictionary.
For example,
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
...
}, PATH)
A common PyTorch convention is to save these checkpoints using the .tar file extension.
Hope this answers your question.