I want to estimate the 'best' parameters of the Intelligent Driver Car-Following Model (IDM). The 'best' refers to those parameters that produce the minimum root mean squared error between the observed and predicted speed. The following shows a reproducible example where I successfully used grid search to find the best parameters but I have been unsuccessful in running genetic algorithm to do the same.
The following IDM function in R takes in 6 parameters and outputs a dataframe of 3 columns, acceleration rate a_i
, speed v_i
and distance g_x_i
:
calculate_IDM <- function(A_i,
v_0,
g_0,
g_t_i,
b_i,
small_delta){
####################
## Allocate Vectors
####################
# acceleration rate
a_i <- rep(NA_real_, time_length)
# speed
v_i <- rep(NA_real_, time_length)
# position
x_i <- rep(NA_real_, time_length)
# spacing
g_x_i <- rep(NA_real_, time_length)
# speed difference
delta_v_i <- rep(NA_real_, time_length)
# desired spacing
g_star_i <- rep(NA_real_, time_length)
##########################################
## Initial values for Following vehicle
##########################################
# speed
v_i[1] <- v_i_first
# position
x_i[1] <- x_i_first
# spacing
g_x_i[1] <- xn1_first - x_i_first
# speed difference
delta_v_i[1] <- v_i_first - vn1_first
# desired spacing
g_star_i[1] <- g_0 + max(0, (v_i[1] * g_t_i) + ((v_i[1] * delta_v_i[1]) / (2 * sqrt((A_i * b_i)))))
# acceleration rate
a_i[1] <- A_i * (1 - ((v_i[1] / v_0)^small_delta) - ((g_star_i[1] / g_x_i[1])^2))
# a_i[1] <- ifelse(is.nan(a_i[1]), A_i, a_i[1])
# speed
v_i[2] <- v_i[1] + (a_i[1] * time_frame)
### if the speed is negative, make it zero
v_i[2] <- ifelse(v_i[2] < 0, 0, v_i[2])
# position
x_i[2] <- x_i[1] + (v_i[1] * time_frame) + (0.5 * a_i[1] * (time_frame)^2)
# spacing
g_x_i[2] <- xn1_complete[2] - x_i[2]
# speed difference
delta_v_i[2] <- v_i[2] - vn1_complete[2]
####################
## IDM Calculations
####################
for (t in 2:(time_length-1)) {
# desired spacing
g_star_i[t] <- g_0 + max(0, (v_i[t] * g_t_i) + ((v_i[t] * delta_v_i[t]) / (2 * sqrt((A_i * b_i)))))
# acceleration rate
a_i[t] <- A_i * (1 - ((v_i[t] / v_0)^small_delta) - ((g_star_i[t] / g_x_i[t])^2))
# a_i[t] <- ifelse(is.nan(a_i[t]), A_i, a_i[t])
# speed
v_i[t+1] <- v_i[t] + (a_i[t] * time_frame)
### if the speed is negative, make it zero
v_i[t+1] <- ifelse(v_i[t+1] < 0, 0, v_i[t+1])
# position
x_i[t+1] <- x_i[t] + (v_i[t] * time_frame) + (0.5 * a_i[t] * (time_frame)^2)
# spacing
g_x_i[t+1] <- xn1_complete[t+1] - x_i[t+1]
# speed difference
delta_v_i[t+1] <- v_i[t+1] - vn1_complete[t+1]
}
data.frame(a_i, v_i, g_x_i)
}
To run the above function, the speed of the lead vehicle and Time vectors are required:
# Time
last_time <- 300 ## s
time_frame <- 0.1 ## s
Time <- seq(from = 0, to = last_time, by = time_frame)
time_length <- length(Time)
v_i_first <- 0
x_i_first <- 5
## Lead vehicle
vn1_first <- 0 ## first speed m/s
xn1_first <- 100 ## position of lead vehicle front center m
bn1_complete <- c(rep(x = 4, length.out = time_length-2951),
rep(x = 0, length.out = time_length-50)) ## acceleration rate
#############################################
### Complete speed trajectory of Lead vehicle
#############################################
vn1_complete <- rep(NA_real_, time_length) ### an empty vector
xn1_complete <- rep(NA_real_, time_length) ### an empty vector
vn1_complete[1] <- vn1_first
xn1_complete[1] <- xn1_first
for (t in 2:time_length) {
### Lead vehicle calculations
vn1_complete[t] <- vn1_complete[t-1] + (bn1_complete[t-1] * time_frame)
xn1_complete[t] <- xn1_complete[t-1] + (vn1_complete[t-1] * time_frame) + (0.5 * bn1_complete[t-1] * (time_frame)^2)
}
Now, I can apply the function:
## one example
dff <- calculate_IDM(4, 30, 6.5, 1, 4, 2)
head(dff)
a_i v_i g_x_i
1 3.981274 0.0000000 95.00000
2 3.978206 0.3981274 95.00009
3 3.973594 0.7959480 95.00039
4 3.967446 1.1933075 95.00093
5 3.959771 1.5900521 95.00176
6 3.950581 1.9860292 95.00296
The observed speed and the parameters list are as follows:
library(tidyverse)
obs_data <- tibble(
obs_v_i = dff$v_i
)
# Parameters list
parameters_grid <- list(
A_i = c(2, 4),
v_0 = c(27, 30),
g_0 = c(6.5, 7),
g_t_i = c(1, 3),
b_i = c(4, 5),
small_delta = c(2, 3)
) %>%
expand.grid() %>%
as_tibble()
The fitness function and 2 examples are below:
# Fitness function
fitness_func <- function(obs_data,
A_i,
v_0,
g_0,
g_t_i,
b_i,
small_delta) {
df <- cbind(obs_data, calculate_IDM(A_i,
v_0,
g_0,
g_t_i,
b_i,
small_delta))
sqrt(sum((df$obs_v_i - df$v_i)^2)/nrow(df))
}
> fitness_func(obs_data, 4, 30, 6.5, 1, 4, 2)
[1] 0
> fitness_func(obs_data, 2, 27, 7, 3, 5, 3)
[1] 1.406937
Now I can use the rowwise()
function from dplyr
to do grid search:
parameters_grid %>%
rowwise() %>%
mutate(RMSE = fitness_func(obs_data,
A_i,
v_0,
g_0,
g_t_i,
b_i,
small_delta))
# A tibble: 64 x 7
# Rowwise:
A_i v_0 g_0 g_t_i b_i small_delta RMSE
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 27 6.5 1 4 2 1.68
2 4 27 6.5 1 4 2 0.213
3 2 30 6.5 1 4 2 1.65
4 4 30 6.5 1 4 2 0
5 2 27 7 1 4 2 1.68
6 4 27 7 1 4 2 0.218
7 2 30 7 1 4 2 1.65
8 4 30 7 1 4 2 0.00794
9 2 27 6.5 3 4 2 1.57
10 4 27 6.5 3 4 2 0.814
# ... with 54 more rows
You can imagine that if the parameters list is bigger it will increase the calculation time significantly. So, I want to run the genetic algorithm. Using the example here, I tried using the GA
library to estimate the parameters but getting error:
library(GA)
GA <- ga(type = "real-valued",
fitness = -fitness_func(obs_data,
A_i,
v_0,
g_0,
g_t_i,
b_i,
small_delta),
lower = c(2, 27, 6.5, 1, 4, 2), upper = c(4, 30, 7, 3, 5, 3),
popSize = 5, maxiter = 10, run = 10)
Error in calculate_IDM(A_i, v_0, g_0, g_t_i, b_i, small_delta) :
object 'g_0' not found
Please let me know what I'm doing wrong here.
The fitness
as documented in the ?ga
is
the fitness function, any allowable R function which takes as input an individual string representing a potential solution, and returns a numerical value describing its “fitness”.
So, we could wrap it as a function with two arguments, and then use fitness_func
arguments as x[1]
, x[2]
, ..., x[6]
which would be the same length as the lower
and upper
bound values. Here, we can also pass the data
separately
library(GA)
GA <- ga(type = "real-valued",
fitness = function(dat, x) {-fitness_func(dat,
x[1],
x[2],
x[3],
x[4],
x[5],
x[6])},
dat = obs_data,
lower = c(2, 27, 6.5, 1, 4, 2), upper = c(4, 30, 7, 3, 5, 3),
popSize = 5, maxiter = 1000, run = 100)
#GA | iter = 1 | Mean = -0.5668704 | Best = -0.3523867
#GA | iter = 2 | Mean = -0.3762976 | Best = -0.3523867
#GA | iter = 3 | Mean = -0.3529940 | Best = -0.3523867
#GA | iter = 4 | Mean = -0.3523867 | Best = -0.3523867
#GA | iter = 5 | Mean = -0.3523867 | Best = -0.3523867
#GA | iter = 6 | Mean = -0.3523867 | Best = -0.3523867
#GA | iter = 7 | Mean = -0.3523867 | Best = -0.3523867
#GA | iter = 8 | Mean = -0.3640060 | Best = -0.3523867
#...
#GA | iter = 519 | Mean = -0.08506463 | Best = -0.08505393
#GA | iter = 520 | Mean = -0.08505440 | Best = -0.08505393
#GA | iter = 521 | Mean = -0.14507196 | Best = -0.08505393
#GA | iter = 522 | Mean = -0.08505393 | Best = -0.08505393
#GA | iter = 523 | Mean = -0.08505393 | Best = -0.08505393
#GA | iter = 524 | Mean = -0.11238973 | Best = -0.08505393
#GA | iter = 525 | Mean = -0.31888465 | Best = -0.08505393
#GA | iter = 526 | Mean = -0.09641056 | Best = -0.08505393
There is a warning at the end though