Faced with the need to imitate the behavior of an old system (from the mainframe era), I need to program an specific collation criteria where the non-ASCII letters get the least priority.
I have started writing something like this (works only for the first letter of the string):
library(tidyverse)
library(stringi)
df <- tribble(
~nombre,
"Alonso",
"Álvarez",
"Zapatero"
)
df %>%
arrange(nombre)
#> # A tibble: 3 x 1
#> nombre
#> <chr>
#> 1 Alonso
#> 2 Álvarez
#> 3 Zapatero
df %>%
arrange(stri_trans_general(str_sub(nombre, 1, 1), "Latin-ASCII") != str_sub(nombre, 1, 1),
nombre)
#> # A tibble: 3 x 1
#> nombre
#> <chr>
#> 1 Alonso
#> 2 Zapatero
#> 3 Álvarez
Would you suggest some alternative approachs?
I've just found the answer: using icuSetCollate(locale = "ASCII")
library(tidyverse)
library(stringi)
df <- tribble(
~nombre,
"Alonso",
"Álvarez",
"Zapatero"
)
icuSetCollate(locale = "ASCII")
df %>%
arrange(nombre)
#> # A tibble: 3 x 1
#> nombre
#> <chr>
#> 1 Alonso
#> 2 Zapatero
#> 3 Álvarez
icuSetCollate(locale = "default")
df %>%
arrange(nombre)
#> # A tibble: 3 x 1
#> nombre
#> <chr>
#> 1 Alonso
#> 2 Álvarez
#> 3 Zapatero