I have a pretty typical json file, except a couple of items contain nested label/value pairs. Data sample:
{
"total_count":10000,
"count_from":1,
"count_to":1000,
"contacts":[
{
"contact_id":"ABC123",
"contact_last_name":"Last name",
"contact_email":[
{
"label":"primary",
"value":"last.first@example.com"
},
{
"label":"Secondary",
"value":"first.last@example.com"
},
{
"label":"personal",
"value":"last.first@gmail.com"
}
],
"research_mail":"last.first@yahoo.com",
"contact_phone":[
{
"label":"Desk/Work",
"value":"2015555555"
},
{
"label":"Mobile",
"value":"2015555556"
},
{
"label":"Other/Home",
"value":"2015555557"
}
],
"contact_address1":"3rd street",
"contact_asst_name":"",
"contact_asst_phone":""
}
]
}
I'm using pandas json_normalize to create a data set before finally creating the csv.
import json
import csv
import pandas as pd
with open("sourcefilename") as f:
data = json.load(f)
info_df = pd.json_normalize(data, 'contacts')
The contact_email and research_email values each return as individual columns, with the raw JSON data for the column contents.
contact_id,contact_last_name,contact_email,research_mail, etc.
My desired output columns for that data is
contact_id,contact_last_name,contact_email_primary,contact_email_secondary,contact_email_personal,research_mail, etc.
Could someone suggest the best way to approach it? I would prefer to continue to use pandas and json_normalize if possible.
A simple approach there is to change the lists into dicts so that json_normalize can more easily apply its magic:
with a quick re-formatter it could give
def list2dic(inconvenient_list):
reformatted_dic = {}
for item in inconvenient_list:
reformatted_dic[item['label']] = item['value']
return reformatted_dic
Apply it to the contact_email and contact_phone fields:
for contact in data['contacts']:
contact['contact_email'] = list2dict(contact['contact_email'])
contact['contact_phone'] = list2dict(contact['contact_phone'])
and now json_normalize should work just fine (changing the separator from '.' to '_')
info_df = pd.json_normalize(data, 'contacts', sep='_')