In this code attendance get marked in "attendance.csv" file. What I want is to create separate "attendance.csv" day wise, rather than overwriting the existing file, so that I can trace back past attendance if any conflicts from employee arise in future. I am unable to think and produce how it can be achieved.
Attendance CSV file contains the following entries:
ID,NAME,ATTENDANCE,EMAIL
12,sk,1,[email protected]
15,Aratrika Kosta,0,[email protected]
Programming language used Python.
def marking():
df = pd.read_csv("CSV_files//attendance.csv")
# df.loc[:,"ATTENDANCE"] = 0 # default attendance value (absent)
# df.to_csv("CSV_files//attendance.csv",mode = 'w', index=False)
def assure_path_exists(path): #if path not exists create path
dir = os.path.dirname(path)
if not os.path.exists(dir):
os.makedirs(dir)
recognizer = cv2.face.LBPHFaceRecognizer_create()
assure_path_exists("trainer/")
recognizer.read('trainer/trainer.yml')
cascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
font = cv2.FONT_HERSHEY_SIMPLEX
cam = cv2.VideoCapture(0)
while True:
# Read the video frame
ret, im =cam.read()
# Convert the captured frame into grayscale
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
# Get all face from the video frame
faces = faceCascade.detectMultiScale(gray, 1.2,5)
# For each face in faces
for(x,y,w,h) in faces:
# Create rectangle around the face
cv2.rectangle(im, (x-20,y-20), (x+w+20,y+h+20), (0,255,0), 4)
# Recognize the face belongs to which ID
Id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
print(confidence)
#confidence-->0 (best) , more the value of confidence lesser will be accuracy
if confidence>80:
continue
else:
imgdict = dict()
df = pd.read_csv("CSV_files//attendance.csv")
#Names and Ids as imgdict
diction = dict(df.loc[:,'ID']) #making dict from ID and NAME columns
imgdict = {}
for key,vals in diction.items():
imgdict[key+1] = vals
# Check the ID if exist
for k,v in imgdict.items(): #looping through all keys
#print(k, type(k), v)
if (v==Id):
Id = v #if key is matched with recognizer Id , then assign Id=valueofimgdict
df = pd.read_csv("CSV_files//attendance.csv")
df.loc[k-1,"ATTENDANCE"]= 1 #student is present
# df.loc[:,"ATTENDANCE"]= 1 #student is present
df.to_csv("CSV_files//attendance.csv",mode = 'w', index=False)
# Put text describe who is in the picture
cv2.rectangle(im, (x-22,y-90), (x+w+22, y-22), (0,255,0), -1) #-1-->filled rectangle
cv2.putText(im, str(Id), (x,y-40), font, 1, (255,255,255), 3) #1 is size , 3 is thickness
# Display the video frame with the bounded rectangle
cv2.imshow('im',im)
# If 'q' is pressed, close program
if cv2.waitKey(10) & 0xFF == ord('q'):
break
# Stop the camera
cam.release()
# Close all windows
cv2.destroyAllWindows()
Import
You need to import datetime module
import datetime
Just add today Date
then incorporate day with attendance name like following:
x = datetime.date.today()
path = 'CSV_files//attendance_{}.csv'.format(x.day)
OR
path = f'CSV_files//attendance_{x.day}.csv'
Now if you print this path, this will give you the following:
print(path)
Output
CSV_files//attendance_4.csv
For complete date
path = f'CSV_files//attendance_{x.day}-{x.month}-{x.year}.csv'
Output
print(path)
CSV_files//attendance_4-4-2021.csv