note: this question was briefly marked as a duplicate of this, but it is not an exact duplicate since I am asking about std::optionals specifically. Still a good question to read if you care about general case.
Assume I have nested optionals, something like this(dumb toy example):
struct Person{
const std::string first_name;
const std::optional<std::string> middle_name;
const std::string last_name;
};
struct Form{
std::optional<Person> person;
};
and this spammy function:
void PrintMiddleName(const std::optional<Form> form){
if (form.has_value() && form->person.has_value() && form->person->middle_name.has_value()) {
std::cout << *(*(*form).person).middle_name << std::endl;
} else {
std::cout << "<none>" << std::endl;
}
}
What would be the best way to flatten this optional check?
I have made something like this, it is not variadic, but I do not care that much about that(I can add one more level(overload with membr3
) if really necessary, and everything beyond that is terrible code anyway).
template<typename T, typename M>
auto flatten_opt(const std::optional<T> opt, M membr){
if (opt.has_value() && (opt.value().*membr).has_value()){
return std::optional{*((*opt).*membr)};
}
return decltype(std::optional{*((*opt).*membr)}){};
}
template<typename T, typename M1, typename M2>
auto ret_val_helper(){
// better code would use declval here since T might not be
// default constructible.
T t;
M1 m1;
M2 m2;
return ((t.*m1).value().*m2).value();
}
template<typename T, typename M1, typename M2>
std::optional<decltype(ret_val_helper<T, M1, M2>())> flatten_opt(const std::optional<T> opt, M1 membr1, M2 membr2){
if (opt.has_value() && (opt.value().*membr1).has_value()){
const auto& deref1 = *((*opt).*membr1);
if ((deref1.*membr2).has_value()) {
return std::optional{*(deref1.*membr2)};
}
}
return {};
}
void PrintMiddleName2(const std::optional<Form> form){
auto flat = flatten_opt(form, &Form::person, &Person::middle_name);
if (flat) {
std::cout << *flat;
}
else {
std::cout << "<none>" << std::endl;
}
}
notes:
std::optional
to some better optional.std::optional
does not support references.flatten_has_value
function(although it is useful), since if there is a way to nicely flatten the nested optionals there is also a way to write that function.The operation you're looking for is called the monadic bind operation, and is sometimes spelled and_then
(as it is in P0798 and Rust).
You're taking an optional<T>
and a function T -> optional<U>
and want to get back an optional<U>
. In this case the function is a pointer to data member, but it really does behave as a function in this sense. &Form::person
takes a Form
and gives back an optional<Person>
.
You should write this in a way that is agnostic to the kind of function. The fact that it's specifically a pointer to member data isn't really important here, and maybe tomorrow you'll want a pointer to member function or even a free function. So that's:
template <typename T,
typename F,
typename R = std::remove_cvref_t<std::invoke_result_t<F, T>>,
typename U = mp_first<R>>
requires SpecializationOf<R, std::optional>
constexpr auto and_then(optional<T> o, F f) -> optional<U>
{
if (o) {
return std::invoke(f, *o);
} else {
return std::nullopt;
}
}
This is one of the many kinds of function declarations that are just miserable to write in C++, even with concepts. I'll leave it as an exercise to properly add references into there. I choose to specifically write it as -> optional<U>
rather than -> R
because I think it's important for readability that you can see that it does, in fact, return some kind of optional
.
Now, the question is how do we chain this to multiple functions. Haskell uses >>=
for monadic bind, but in C++ that has the wrong association (o >>= f >>= g
would evaluate f >>= g
first and require parentheses). So the next closest chose of operator would be >>
(which means something different in Haskell, but we're not Haskell, so it's okay). Or you could implement this borrowing the |
model that Ranges does.
So we'd either end up syntactically with:
auto flat = form >> &Form::person >> &Person::middle_name;
or
auto flat = form | and_then(&Form::person)
| and_then(&Person::middle_name);
A different way to compose multiple monadic binds together is an operation that Haskell spells >=>
, which is called Kleisli composition. In this case, it takes a function T -> optional<U>
and a function U -> optional<V>
and produces a function T -> optional<V>
. This is something that is exceedingly annoying to write constraints for so I'm just going to skip it, and it would look something like this (using the Haskell operator spelling):
template <typename F, typename G>
constexpr auto operator>=>(F f, G g) {
return [=]<typename T>(T t){
using R1 = std::remove_cvref_t<std::invoke_result_t<F, T>>;
static_assert(SpecializationOf<R1, std::optional>);
using R2 = std:remove_cvref_t<std::invoke_result_t<G, mp_first<R1>>>;
static_assert(SpecializationOf<R2, std::optional>);
if (auto o = std::invoke(f, t)) {
return std::invoke(g, *o);
} else {
// can't return nullopt here, have to specify the type
return R2();
}
};
}
And then you could write (or at least you could if >=>
were an operator you could use):
auto flat = form | and_then(&Form::person >=> &Person::middle_name);
Because the result of >=>
is now a function that takes a Form
and returns an optional<string>
.