Search code examples
pythongoogle-colaboratoryhuggingface-transformershuggingface-tokenizersgpt-2

What is tokenizer.max len doing in this class definition?


I am following Rostylav's tutorial found here and am runnning into an error I dont quite understand:

AttributeError                            
Traceback (most recent call last)
<ipython-input-22-523c0d2a27d3> in <module>()
----> 1 main(trn_df, val_df)

<ipython-input-20-1f17c050b9e5> in main(df_trn, df_val)
     59     # Training
     60     if args.do_train:
---> 61         train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)
     62 
     63         global_step, tr_loss = train(args, train_dataset, model, tokenizer)

<ipython-input-18-3c4f1599e14e> in load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate)
     40 
     41 def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
---> 42     return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
     43 
     44 def set_seed(args):

<ipython-input-18-3c4f1599e14e> in __init__(self, tokenizer, args, df, block_size)
      8     def __init__(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):
      9 
---> 10         block_size = block_size - (tokenizer.max_len - tokenizer.max_len_single_sentence)
     11 
     12         directory = args.cache_dir

AttributeError: 'GPT2TokenizerFast' object has no attribute 'max_len'

This is the class I believe is causing the error, however I am not able to understand what Tokenize.max_len is supposed to do so I can try to fix it:

   class ConversationDataset(Dataset):

    def __init__(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):

        block_size = block_size - (tokenizer.max_len - tokenizer.max_len_single_sentence)

        directory = args.cache_dir
        cached_features_file = os.path.join(
            directory, args.model_type + "_cached_lm_" + str(block_size)
        )

        if os.path.exists(cached_features_file) and not args.overwrite_cache:
            logger.info("Loading features from cached file %s", cached_features_file)
            with open(cached_features_file, "rb") as handle:
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            for _, row in df.iterrows():
                conv = construct_conv(row, tokenizer)
                self.examples.append(conv)

            logger.info("Saving features into cached file %s", cached_features_file)
            with open(cached_features_file, "wb") as handle:
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return torch.tensor(self.examples[item], dtype=torch.long)
 
# Cacheing and storing of data/checkpoints

def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
    return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)

Thank you for reading!


Solution

  • The attribute max_len was migrated to model_max_length. It represents the maximum number of tokens a model can handle (i.e. including special tokens) (documentation).

    max_len_single_sentence on the other side represents the maximum number of tokens a single sentence can have (i.e. without special tokens) (documentation).