I have seen how to solve systems of ODEs in Python, but all of the examples I have seen were "standard" equations. What I mean by standard is that the equations do not say "derivative of one function = expression that contains derivative of another function".
Here is a sample system I am trying to solve numerically. Initial conditions are x(0) = 5, y(0) = 3, z(0) = 2, and all initial derivatives are 0:
x'(t) + 4y(t) = -3y'(t)
y'(t) + ty(t) = -2z'(t)
z'(t) = -2y(t) + x'(t)
I am not 100% sure how to code this. Here is what I have tried:
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
def ODESystem(f,t):
x = f[0]
y = f[1]
z = f[2]
Now, what do I define first: dydt, dxdt or dzdt. Is there a way for me to define one expression that "hangs around" before I use it to define another expression?
You do not need to solve anything manually, you can just as well do
def ODESystem(f,t):
x,y,z = f
return np.linalg.solve([[1,3,0],[0,1,2],[-1,0,1]], [-4, -t, -2])*y