Search code examples
pythonpython-3.xoptimizationnonlinear-optimizationgekko

Gekko Solver does not satisfy Constraints gives wrong solution


I was using Gekko solver for optimizing function, but it gives wrong solution even in simple problems where it also not satisfying the given constraints.

from gekko import GEKKO    
m = GEKKO(remote=False)

a = m.Var(value=0, integer=True)
b = m.Var(value=0, integer=True)

# constraints
m.Equation([a + b > 7, a**2 + b**2 < 40])
# Objective function
m.Maximize(a**3 + b**3)


m.solve(disp=False)
print(a.value[0])
print(b.value[0])
max_value = a.value[0]**3 + b.value[0]**3
print(max_value)

Output:

2.0
6.0
224.0

Solution

  • Adding a check at the end reveals that Gekko finds a correct solution within the requested tolerance although the default solver is IPOPT that finds a continuous solution even when integer=True is requested.

    a = a.value[0]; b = b.value[0]
    print('a+b>7',a+b)
    print('a^2+b^2<40',a**2+b**2)
    
    # 0.71611780666
    # 6.2838821838
    # 248.50000026418317
    # a+b>7 6.99999999046
    # a^2+b^2<40 40.00000001289459
    

    Try switching to the MINLP solver APOPT with m.options.SOLVER=1. Inequalities < and <= are equivalent in Gekko because it is a numerical solution.

    2.0
    6.0
    224.0
    a+b>7 8.0
    a^2+b^2<40 40.0
    

    If it is < or > in the mathematical sense that 7 and 40 are not allowable then shift up or down one integer on the constraints such as to >=8 and <=39.

    m.Equation([a + b >= 8, \
                a**2 + b**2 <= 39])
    

    Results are correct:

    a=3.0  b=5.0  Objective: 152.0
    a+b>=8 with a+b=8.0 (constraint satisfied)
    a^2+b^2=<39 with a^2+b^2=34.0 (constraint satisfied)
    

    Is there something else missing here? Why is there a claim of no feasible solution?

    from gekko import GEKKO    
    m = GEKKO(remote=False)
    
    a = m.Var(value=0, integer=True)
    b = m.Var(value=0, integer=True)
    
    # constraints
    m.Equation([a + b >= 7, \
                a**2 + b**2 <= 40])
    # Objective function
    m.Maximize(a**3 + b**3)
    
    m.options.SOLVER =1
    m.solve(disp=True)
    print(a.value[0])
    print(b.value[0])
    max_value = a.value[0]**3 + b.value[0]**3
    print(max_value)
    
    a = a.value[0]; b = b.value[0]
    print('a+b>7',a+b)
    print('a^2+b^2<40',a**2+b**2)