I'm playing around with class inheritance and I'm wondering if its possible to change aspects of an inherited method in the child class without having to rewrite the whole thing?
For example:
class Parent:
def _init_(self, x):
self.x = x
def foo(self):
a = self.x
if a > 0:
forward = True
elif a < 0:
forward = False
return forward
class Child1(Parent):
def foo(self, y=None, bool=False):
if bool:
a = y
else:
a = self.x
super().foo()
class Child2(Parent):
pass
What I'm looking for is if I called Child1.foo
it could reassign the variable a
before running through
the method, as defined in the parent class. Where a
is dependent on the y
and bool
arguments passed through the rewritten method in Child1
:
print(Child1(2).foo(-2, True))
# => False
print(Child1(2).foo())
# => True
print(Child2(2).foo())
# => True
Is this possible, or would I just have to rewrite a new method for each class?
I think I understand your problem and I have some suggestions for how you can resolve this:
For example:
class Parent:
def __init__(self, x):
self.x = x
def _foo(self, a=None):
a = a if a else self.x * 2
if a > 10:
over = True
else:
over = False
return over
def foo(self):
return self._foo()
class Child1(Parent):
def foo(self, y=None, condition=False):
if condition:
a = y*2
else:
a = self.x*2
return self._foo(a)
class Child2(Parent):
pass
In this example, all child classes will inherit the _foo
"private" function, where they may or may not receive a value of a
.
There is another solution to this problem with abstract classes (here is an example of how to do this), where you forces the child class to implement the function foo
:
Remembering that in the case of abstract classes, if you do not define the function decorated with @abstractmethod, you will receive an error similar to this TypeError: Can't instantiate abstract class Child2 with abstract methods foo
Example:
Python 2.x
from abc import ABCMeta, abstractmethod
class Parent:
__metaclass__ = ABCMeta
def __init__(self, x):
self.x = x
def _foo(self, a=None):
a = a if a else self.x * 2
if a > 10:
over = True
else:
over = False
return over
@abc.abstractmethod
def foo(self):
pass
class Child1(Parent):
def foo(self, y=None, condition=False):
if condition:
a = y*2
else:
a = self.x*2
return self._foo(a)
class Child2(Parent):
def foo(self):
return self._foo()
Python 3.x
class Parent(metaclass=ABCMeta):
def __init__(self, x):
self.x = x
def _foo(self, a=None):
a = a if a else self.x * 2
if a > 10:
over = True
else:
over = False
return over
@abc.abstractmethod
def foo(self):
pass
class Child1(Parent):
def foo(self, y=None, condition=False):
if condition:
a = y*2
else:
a = self.x*2
return self._foo(a)
class Child2(Parent):
def foo(self):
return self._foo()
In both examples you will have the same result by running this:
print(Child1(2).foo(10, True)) // True
print(Child1(2).foo()) // False
print(Child2(2).foo()) // False