Suppose I have a Singleton that loads resources into memory when created, and performs operation on the data when callings its methods. Now suppose, that I want to have the ability to tell the Singleton to release those resources, as I don't expect to be using them in the near future, but also be able to load those resources back in, when the time comes. And I want it all to be thread safe.
What would be the best way to aproach this problem?
Would this example work?:
// Singleton implementation
...
private IDisposable resource;
private bool loadingResources;
private IDisposable Resource {
get => resource ?? throw new CustomException();
}
// Method A
public void A() {
var resource = Resource; // Throws CustomException if resource is null
// Do stuff
}
// Method B
public void B() {
var resource = Resource;
// Do stuff
}
public void ReleaseResources() {
if (resource != null)
lock (thislock) {
//resource.Dispose();
resource = null;
}
}
public void LoadResources() {
if (!loadingResources && resource == null)
lock (thislock)
if (!loadingResources && resource == null)
{
loadingResources = true;
// Load resources
resource = CreateResource();
loadingResources = false;
}
}
I would suggest separating the resource handling from the actual usage. Assuming the resource requires disposal this could look something like:
public class DisposableWrapper<T> where T : IDisposable
{
private readonly Func<T> resourceFactory;
private T resource;
private bool constructed;
private object lockObj = new object();
private int currentUsers = 0;
public DisposableWrapper(Func<T> resourceFactory)
{
this.resourceFactory = resourceFactory;
}
public O Run<O>(Func<T, O> func)
{
lock (lockObj)
{
if (!constructed)
{
resource = resourceFactory();
constructed = true;
}
currentUsers++;
}
try
{
return func(resource);
}
catch
{
return default;
}
finally
{
Interlocked.Decrement(ref currentUsers);
}
}
public void Run(Action<T> action)
{
lock (lockObj)
{
if (!constructed)
{
resource = resourceFactory();
constructed = true;
}
currentUsers++;
}
try
{
action(resource);
}
finally
{
Interlocked.Decrement(ref currentUsers);
}
}
public bool TryRelease()
{
lock (lockObj)
{
if (currentUsers == 0 && constructed)
{
constructed = false;
resource.Dispose();
resource = default;
return true;
}
return false;
}
}
}
If the resource does not require disposal I would suggest to instead use lazy<T>
. Releasing resources would simply mean replacing the existing lazy object with a new one. Letting the old object be cleaned up by the garbage collector.