Thanks in advance.
my development environment:
$ cat /proc/version
Linux version 5.4.0-66-generic (buildd@lgw01-amd64-016) (gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)) #74~18.04.2-Ubuntu SMP Fri Feb 5 11:17:31 UTC 2021
$ ld --version
GNU ld (GNU Binutils for Ubuntu) 2.30
Copyright (C) 2018 Free Software Foundation, Inc.
$ getconf GNU_LIBC_VERSION
glibc 2.27
$ #my glibc source version is 2.32.9000-development
$ cat ./version.h
/* This file just defines the current version number of libc. */
#define RELEASE "development"
#define VERSION "2.32.9000"
For some reasons, I need to modify and test glibc. I follow the steps of this website(https://sourceware.org/glibc/wiki/Testing/Builds#Compile_against_glibc_in_an_installed_location) to modify glibc and write test programs.
I successfully modified some pthread functions and passed the test (the test program I wrote can compiled against the install glibc and ran successfully). ldd the program.
$ ldd ./exec/1-1.out
linux-vdso.so.1 (0x00007ffcbf367000)
libpthread.so.0 => /home/cjl-target/gnu/install/lib64/libpthread.so.0 (0x00007fcadcea9000)
libc.so.6 => /home/cjl-target/gnu/install/lib64/libc.so.6 (0x00007fcadcaed000)
/home/cjl-target/gnu/install/lib64/ld-linux-x86-64.so.2 => /lib64/ld-linux-x86-64.so.2 (0x00007fcadd2ca000)
As shown above, the shared libraries that the program depends on all point to the glibc installation path.
But when I compiled message-queue's test program(test mq_unlink) and ran it, failed as bellow:
./exec/1-1.out: symbol lookup error: /lib/x86_64-linux-gnu/libpthread.so.0: undefined symbol: __libc_vfork, version GLIBC_PRIVATE
check the library that is depended by the program:
$ ldd ./exec/1-1.out
linux-vdso.so.1 (0x00007ffce3f72000)
librt.so.1 => /home/cjl-target/gnu/install/lib64/librt.so.1 (0x00007f0a389a2000)
libc.so.6 => /home/cjl-target/gnu/install/lib64/libc.so.6 (0x00007f0a385e6000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f0a383c7000)
/home/cjl-target/gnu/install/lib64/ld-linux-x86-64.so.2 => /lib64/ld-linux-x86-64.so.2 (0x00007f0a38dac000)
As shown above, the shared libraries libpthread.so.0 points to the system library. Why?
my compile script is(from the website above):
# dobuild.sh
SYSROOT=/home/xxx/xxx/xxx #the glibc's installation path
(set -x; \
gcc \
-L${SYSROOT}/usr/lib64 \
-I${SYSROOT}/usr/include \
--sysroot=${SYSROOT} \
-Wl,-rpath=${SYSROOT}/lib64 \
-Wl,--dynamic-linker=${SYSROOT}/lib64/ld-linux-x86-64.so.2 \
-Wall $*
)
when I compile the pthread's test program:./dobuild 1-1.c -pthread -Wall
when I compile the mq's test program:./dobuild 1-1.c -lrt -Wall
In addition, it is confusing that when invoke the pthread_create in the mq_unlink's test program, compiling it ./dobuild 1-1.c -lrt -pthread
, the ldd result shows that all dependent libraries point to the installed glibc.
I've tried multiple variations of this, but none of them seem to work. Any ideas?
First, you should stop using ldd
-- in the presence of multiple GLIBCs on a host, ldd
is more likely to mislead than to illuminate.
If you want to see which libraries are really loaded, do this instead:
LD_TRACE_LOADED_OBJECTS=1 ./exec/1-1.out
Second, you should almost never use $*
in shell scripts. Use "$@"
instead (note: quotes are important). See this answer.
Third, the behavior you are observing is easily explained. To understand it, you need to know the difference between DT_RPATH
and DT_RUNPATH
, described here.
You can verify that your binaries are currently using RUNPATH
, like so:
readelf -d 1-1.out | grep 'R.*PATH'
And you can verify that everything starts working as you expect by adding -Wl,--disable-new-dtags
to the link command (which would cause the binary to use RPATH
instead).
To summarize:
RUNPATH
affects the search for the binary itself, but not for any libraries the binary depends on.RPATH
affects the search path for the binary and all libraries it depends on.RUNPATH
, expected libpthread.so.0
is found only when the binary depends on it directly, but not when the dependency on libpthread
is indirect (via librt
).RPATH
, expected libpthread.so.0
is found regardless of whether the dependency is direct or indirect.Update:
If I want to use DT_RUNPATH, how to set the library runpath for librt?
You would need to link librt.so
with -rpath=${SYSROOT}/lib64
.
You could edit the rt/Makefile
, or build with:
make LDFLAGS-rt.so='-Wl,--enable-new-dtags,-z,nodelete,-rpath=${SYSROOT}/lib64'
You would need to do the same for any other library that may bring transitive dependency on other parts of GLIBC. I don't know of a general way to do this, but setitng LDFLAGS-lib.so='-Wl,-rpath=${SYSROOT}/lib64'
and rebuilding everything might do the trick.