Search code examples
matlabsurfdelaunay

MATLAB Update trisurf handle


I'm using a Delaunay triangularization to convert a scatter plot to a surface. To animate this plot, I want to update the trisurf handle instead of creating a new trisurf plot to reduce overhead and to increase the plotting speed.

Basically, in a for loop, I want to update the properties of the trisurf handle h to obtain the same plot that calling trisurf again would yield.

MWE

x = linspace(0,1,11); 
y = x;
[X,Y] = meshgrid(x,y);
mag = hypot(X(:),Y(:)); % exemplary magnitude
T = delaunay(X(:),Y(:));

z = 0

h = trisurf(T, X(:), Y(:), z*ones(size(X(:))), mag, 'FaceColor', 'interp'); view([-90 90]);

for i = 1:10
    % Compute new values for X, Y, z, and mag
    % -> Update properties of handle h to redraw the trisurf plot instead
    %    of recalling the last line before the for loop again, e.g.,
    % h.FaceVertexCData = ...
    % h.Faces = ...
    % h.XData = ...
end


Solution

  • You can change a few properties of the Patch object returned by trisurf():

    for i = 1:9
      % Compute new values for X, Y, z, and mag
      % As an example:
      x = linspace(0,1,11-i);
      y = x;
      [X,Y] = meshgrid(x,y);
      mag = hypot(X(:),Y(:));
      T = delaunay(X(:),Y(:));
    
      z = i;
      Z = z*ones(size(X)); %we could have just called `meshgrid()` with 3 arguments instead
      % End recomputation
    
      % Update trisurf() patch: option 1
      set( h, 'Faces',T, 'XData',X(T).', 'YData',Y(T).', 'ZData',Z(T).', 'CData',mag(T).' );
      pause(0.25); %just so we can see the result
      % Update trisurf() patch: option 2
      set( h, 'Faces',T, 'Vertices',[X(:) Y(:) Z(:)], 'FaceVertexCData',mag(:) );
      pause(0.25); %just so we can see the result
    end
    

    where z is assumed to always be a scalar, just like in the original call to trisurf().

    • Q: Are these options equally fast?
    • A: I have run some tests (see code below) on my computer (R2019a, Linux) and found that, when the number of x/y-positions is a random number between 2 and 20, multiple set() calls using Vertices can be some 20% faster than set() calls using XData and related properties, and that these strategies are about an order of magnitude faster than multiple trisurf() calls. When the number of x/y-positions is allowed to vary from 2 to 200, however, run times are about the same for the three approaches.
    Nruns=1e3;
    Nxy_max=20;
    
    for i=1:Nruns
      if i==round(Nruns/10)
        tic(); %discard first 10% of iterations
      end
      x = linspace(0,1,randi(Nxy_max-1)+1); %randi([2,Nxy_max]) can be a bit slower
      [X,Y,Z] = meshgrid(x,x,randn());
      mag = hypot(X(:),Y(:));
      T = delaunay(X(:),Y(:));
      trisurf(T, X(:), Y(:), Z(:), mag, 'FaceColor', 'interp');
      view([-90 90]);
    end
    tmean_trisurf=1e3*toc()/(Nruns-round(Nruns/10)+1), %in [ms]
    
    h=trisurf(T, X(:), Y(:), Z(:), mag, 'FaceColor', 'interp');
    view([-90 90]);
    
    for i=1:Nruns
      if i==round(Nruns/10)
        tic();
      end
      x = linspace(0,1,randi(Nxy_max-1)+1);
      [X,Y,Z] = meshgrid(x,x,randn());
      mag = hypot(X(:),Y(:));
      T = delaunay(X(:),Y(:));
      set( h, 'Faces',T, 'XData',X(T).', 'YData',Y(T).', 'ZData',Z(T).', 'CData',mag(T).' );
    end
    tmean_xyzdata=1e3*toc()/(Nruns-round(Nruns/10)+1), %in [ms]
    
    for i=1:Nruns
      if i==round(Nruns/10)
        tic();
      end
      x = linspace(0,1,randi(Nxy_max-1)+1);
      [X,Y,Z] = meshgrid(x,x,randn());
      mag = hypot(X(:),Y(:));
      T = delaunay(X(:),Y(:));
      set( h, 'Faces',T, 'Vertices',[X(:) Y(:) Z(:)], 'FaceVertexCData',mag(:) );
    end
    tmean_vertices=1e3*toc()/(Nruns-round(Nruns/10)+1), %in [ms]