I am trying to convert the output of the Azure speech to text transcription service (json) to a pd data frame.
The following is an example of the obtained json:
{
"source": "https://batchtranscriptionstore1.blob.core.windows.net/recordings/20210221-1022043b576ef4.wav?fakecredentials123456789",
"timestamp": "2020-06-16T09:30:21Z",
"durationInTicks": 41200000,
"duration": "PT4.12S",
"combinedRecognizedPhrases": [
{
"channel": 0,
"lexical": "hello world",
"itn": "hello world",
"maskedITN": "hello world",
"display": "Hello world."
}
],
"recognizedPhrases": [
{
"recognitionStatus": "Success",
"speaker": 1,
"channel": 0,
"offset": "PT0.07S",
"duration": "PT1.59S",
"offsetInTicks": 700000,
"durationInTicks": 15900000,
"nBest": [
{
"confidence": 0.898652852,
"lexical": "hello world",
"itn": "hello world",
"maskedITN": "hello world",
"display": "Hello world.",
"words": [
{
"word": "hello",
"offset": "PT0.09S",
"duration": "PT0.48S",
"offsetInTicks": 900000,
"durationInTicks": 4800000,
"confidence": 0.987572
},
{
"word": "world",
"offset": "PT0.59S",
"duration": "PT0.16S",
"offsetInTicks": 5900000,
"durationInTicks": 1600000,
"confidence": 0.906032
}
]
}
]
}
]
}
Using the following code I manage to make a df with the following columns: source
, timestamp
, durationInTicks
, duration
, combinedRecognizedPhrases
with open('file.json') as json_data:
data = json.load(json_data)
ll = pd.DataFrame(dict(list(data.items())[0:5]))
But I also need the individual values of "combinedRecognizedPhrases" in separate columns. How can I do this?
Based on the answer suggested by @Manakin and the following [link][1], I came up with this solution:
with open('file.json','r') as f:
j = json.load(f)
zz = pd.json_normalize(j, record_path=['combinedRecognizedPhrases'], meta=['source', 'durationInTicks', 'duration'])
[1]: http://(https://towardsdatascience.com/all-pandas-json-normalize-you-should-know-for-flattening-json-13eae1dfb7dd