I have a custom object detection model that I can call with model = MyModel()
and model.loadweights(checkpoint)
and I want to evaluate it using the Object Detection API.
From what I understood there are two possibilities, either I use the legacy eval.py, there I don't know, what to put into the pipeline_config file
Or I use the newer version that is implemented in model_main_tf2.py, but there I would have to save my model as model.config and I don't know what to put the pipeline file either.
Since my model is a YOLO model, it is not included in the sample once yet.
https://github.com/tensorflow/models/tree/master/research/object_detection/configs/tf2
Would really appreciate the help!
You can't calculate the mAP using the Object Detection API because there's no pipeline.config
file for Yolo.
However, you can check this repo out. It's a Tensorflow based implementation of YoloV3. They have working code for calculating mAP. You can modify this accordingly to calculate the mAP of your model.