I'm coding a convolutional auto encoder.
I'm using albumentations for data augmentation in my tensorflow code but I'm facing a rude problem with shape dimensions.
I got a shape of (32, 1, 256, 256, 3) instead of (32, 256, 256, 3) in the output of the train_dataset pipeline.
Here is my code :
def process_path(image_input, image_output):
# load the raw data from the file as a string
img_input = tf.io.read_file(image_input)
img_input = tf.image.decode_jpeg(img_input, channels=3)
img_output = tf.io.read_file(image_output)
img_output = tf.image.decode_jpeg(img_output, channels=3)
return img_input, img_output
def aug_fn(image):
data = {"image": image}
aug_data = transforms(**data)
aug_img = aug_data["image"]
aug_img = tf.cast(aug_img/255.0, tf.float32)
aug_img = tf.image.resize(aug_img, size=[256, 256])
return aug_img
def process_aug(img_input, img_output):
aug_img_input = tf.numpy_function(func=aug_fn, inp=[img_input], Tout=[tf.float32])
aug_img_output = tf.numpy_function(func=aug_fn, inp=[img_output], Tout=[tf.float32])
return aug_img_input, aug_img_output
def set_shapes(img_input, img_output):
img_input.set_shape((256, 256, 3))
img_output.set_shape((256, 256, 3))
return img_input, img_output
transforms = OneOf([CLAHE(clip_limit=2), IAASharpen(), IAAEmboss(), RandomBrightnessContrast()], p=0.3)
train_dataset = (tf.data.Dataset.from_tensor_slices((DIR_TRAIN + filenames_train,
DIR_TRAIN + filenames_train))
.map(process_path, num_parallel_calls=AUTO)
.map(process_aug, num_parallel_calls=AUTO)
.map(set_shapes, num_parallel_calls=AUTO)
.batch(parameters['BATCH_SIZE'])
.prefetch(AUTO)
)
next(iter(train_dataset))
I think this problem comes from the process_aug function with commenting the map function in the dataset pipeline but I didn't find where the problem is in the process_aug function exactly.
I edited the function with adding tf.reshape() but I hope that one of you can explain how avoid for the tf.numpy_function function to add a dimension in the process ?
def process_aug(img_input, img_output):
aug_img_input = tf.numpy_function(func=aug_fn, inp=[img_input, 256], Tout=[tf.float32])
aug_img_input = tf.reshape(aug_img_input, [256, 256, 3])
aug_img_output = tf.numpy_function(func=aug_fn, inp=[img_output, 256], Tout=[tf.float32])
aug_img_output = tf.reshape(aug_img_output, [256, 256, 3])
return aug_img_input, aug_img_output