In model.state_dict()
, model.parameters()
and model.named_parameters()
weights and biases of nn.Linear()
modules are contained separately, e.q. fc1.weight
and fc1.bias
. Is there a simple pythonic way to get both of them?
Expected example looks similar to this:
layer = model['fc1']
print(layer.weight)
print(layer.bias)
You can recover the named parameters for each linear layer in your model like so:
from torch import nn
for layer in model.children():
if isinstance(layer, nn.Linear):
print(layer.state_dict()['weight'])
print(layer.state_dict()['bias'])