I have 1000 points of county name data. (ok_field) Also, there are weather data for 1 to 10 days. (m) This data is a datalist.
(The size of the data is so large that if you use the data below as an example, I am grateful!)
ok_field<-structure(list(state = c("oklahoma", "oklahoma", "oklahoma",
"oklahoma", "oklahoma", "oklahoma", "oklahoma", "oklahoma", "oklahoma",
"oklahoma"), county = c("Texas", "Texas", "Texas", "Texas", "Cimarron",
"Cimarron", "Texas", "Texas", "Texas", "Texas")), row.names = c(NA,
10L), class = "data.frame")
> ok_field
state county
1 oklahoma Texas
2 oklahoma Texas
3 oklahoma Texas
4 oklahoma Texas
5 oklahoma Cimarron
6 oklahoma Cimarron
7 oklahoma Texas
8 oklahoma Texas
9 oklahoma Texas
10 oklahoma Texas
m <- list(`1` = structure(list(DAY = c(15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15), county = c("Adair", "Alfalfa", "Atoka",
"Beaver", "Beckham", "Blaine", "Bryan", "Caddo", "Canadian",
"Carter", "Cherokee", "Choctaw", "Cimarron", "Cleveland", "Coal",
"Comanche", "Cotton", "Craig", "Creek", "Custer", "Delaware",
"Dewey", "Ellis", "Garfield", "Garvin", "Grady", "Grant", "Greer",
"Harmon", "Harper", "Haskell", "Hughes", "Jackson", "Jefferson",
"Johnston", "Kay", "Kingfisher", "Kiowa", "Latimer", "Le Flore",
"Lincoln", "Logan", "Love", "Major", "Marshall", "Mayes", "McClain",
"McCurtain", "McIntosh", "Murray", "Muskogee", "Noble", "Nowata",
"Okfuskee", "Oklahoma", "Okmulgee", "Osage", "Ottawa", "Pawnee",
"Payne", "Pittsburg", "Pontotoc", "Pottawatomie", "Pushmataha",
"Roger Mills", "Rogers", "Seminole", "Sequoyah", "Stephens",
"Texas", "Tillman", "Tulsa", "Wagoner", "Washington", "Washita",
"Woods", "Woodward"), TAVG_C = c(27.6888888888889, 31.1388888888889,
28.6777777777778, 30.2027777777778, 28.8111111111111, 30.25,
28.1111111111111, 29.4851851851852, 29.3055555555556, 28.7972222222222,
27.8805555555556, 29.1722222222222, 26.8166666666667, 28.8444444444444,
28.9222222222222, 29.1388888888889, 30.0722222222222, 27.4222222222222,
28.1611111111111, 29.8638888888889, 28.1277777777778, 29.55,
28.9888888888889, 29.4166666666667, 28.4666666666667, 29.212962962963,
29.9888888888889, 29.7888888888889, 29.9611111111111, 31.8777777777778,
28.3833333333333, 27.7, 29.3, 29.8277777777778, 28.1055555555556,
29.0027777777778, 31.3444444444444, 30.2666666666667, 29.1111111111111,
28.4805555555556, 28.0777777777778, 29.2361111111111, 29.7888888888889,
30.7777777777778, 28.7055555555556, 27.9388888888889, 27.7388888888889,
28.3111111111111, 29.15, 27.6, 28.4055555555556, 29.3666666666667,
28.6555555555556, 28.3, 28.4416666666667, 28.1666666666667, 27.9083333333333,
28.2888888888889, 28.6888888888889, 28.4069444444444, 28.5944444444444,
28.2222222222222, 28.4777777777778, 28.3259259259259, 28.0055555555556,
28.2138888888889, 27.6, 28.75, 29.0777777777778, 29.4555555555556,
30.9111111111111, 29.4166666666667, 28.4222222222222, 27.9, 30.0333333333333,
30.6944444444444, 30.1907407407407)), row.names = c(NA, -77L), class = "data.frame"),
`2` = structure(list(DAY = c(16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16), county = c("Adair",
"Alfalfa", "Atoka", "Beaver", "Beckham", "Blaine", "Bryan",
"Caddo", "Canadian", "Carter", "Cherokee", "Choctaw", "Cimarron",
"Cleveland", "Coal", "Comanche", "Cotton", "Craig", "Creek",
"Custer", "Delaware", "Dewey", "Ellis", "Garfield", "Garvin",
"Grady", "Grant", "Greer", "Harmon", "Harper", "Haskell",
"Hughes", "Jackson", "Jefferson", "Johnston", "Kay", "Kingfisher",
"Kiowa", "Latimer", "Le Flore", "Lincoln", "Logan", "Love",
"Major", "Marshall", "Mayes", "McClain", "McCurtain", "McIntosh",
"Murray", "Muskogee", "Noble", "Nowata", "Okfuskee", "Oklahoma",
"Okmulgee", "Osage", "Ottawa", "Pawnee", "Payne", "Pittsburg",
"Pontotoc", "Pottawatomie", "Pushmataha", "Roger Mills",
"Rogers", "Seminole", "Sequoyah", "Stephens", "Texas", "Tillman",
"Tulsa", "Wagoner", "Washington", "Washita", "Woods", "Woodward"
), TAVG_C = c(27.75, 30.0333333333333, 28.65, 27.1083333333333,
28.6583333333333, 29.1722222222222, 28.2277777777778, 28.5814814814815,
28.5055555555556, 28.4083333333333, 27.9833333333333, 29.2388888888889,
22.9194444444444, 28.2333333333333, 29.0333333333333, 28.3833333333333,
29.3944444444444, 27.2166666666667, 27.425, 28.9861111111111,
27.9166666666667, 28.8083333333333, 27.65, 28.5833333333333,
28.1388888888889, 28.5759259259259, 29.2444444444444, 29.6611111111111,
29.9444444444444, 29.8444444444444, 28.4222222222222, 27.7,
29.5777777777778, 29.2833333333333, 28.0388888888889, 28.3805555555556,
30.2833333333333, 29.6722222222222, 29.15, 28.9416666666667,
27.85, 28.5638888888889, 29.2944444444444, 29.6694444444444,
28.6111111111111, 27.9111111111111, 27.2277777777778, 28.7277777777778,
29.1, 27.6055555555556, 28.4916666666667, 28.7555555555556,
28.5166666666667, 28.2055555555556, 27.8138888888889, 28.0444444444444,
27.7361111111111, 28.1666666666667, 28.2944444444444, 27.9152777777778,
28.6638888888889, 27.9527777777778, 28.2611111111111, 28.9777777777778,
27.2888888888889, 28.2527777777778, 27.35, 28.9055555555556,
28.4944444444445, 24.8185185185185, 30.4555555555556, 29.4138888888889,
28.6333333333333, 27.9388888888889, 29.35, 29.4777777777778,
29.3074074074074)), row.names = c(NA, -77L), class = "data.frame"))
>m
$`1`
DAY county TAVG_C
1 15 Adair 27.68889
2 15 Alfalfa 31.13889
3 15 Atoka 28.67778
4 15 Beaver 30.20278
5 15 Beckham 28.81111
6 15 Blaine 30.25000
7 15 Bryan 28.11111
8 15 Caddo 29.48519
9 15 Canadian 29.30556
10 15 Carter 28.79722
11 15 Cherokee 27.88056
12 15 Choctaw 29.17222
13 15 Cimarron 26.81667
14 15 Cleveland 28.84444
15 15 Coal 28.92222
16 15 Comanche 29.13889
17 15 Cotton 30.07222
18 15 Craig 27.42222
19 15 Creek 28.16111
20 15 Custer 29.86389
21 15 Delaware 28.12778
22 15 Dewey 29.55000
23 15 Ellis 28.98889
24 15 Garfield 29.41667
25 15 Garvin 28.46667
26 15 Grady 29.21296
27 15 Grant 29.98889
28 15 Greer 29.78889
29 15 Harmon 29.96111
30 15 Harper 31.87778
31 15 Haskell 28.38333
32 15 Hughes 27.70000
33 15 Jackson 29.30000
34 15 Jefferson 29.82778
35 15 Johnston 28.10556
36 15 Kay 29.00278
37 15 Kingfisher 31.34444
38 15 Kiowa 30.26667
39 15 Latimer 29.11111
40 15 Le Flore 28.48056
41 15 Lincoln 28.07778
42 15 Logan 29.23611
43 15 Love 29.78889
44 15 Major 30.77778
45 15 Marshall 28.70556
46 15 Mayes 27.93889
47 15 McClain 27.73889
48 15 McCurtain 28.31111
49 15 McIntosh 29.15000
50 15 Murray 27.60000
51 15 Muskogee 28.40556
52 15 Noble 29.36667
53 15 Nowata 28.65556
54 15 Okfuskee 28.30000
55 15 Oklahoma 28.44167
56 15 Okmulgee 28.16667
57 15 Osage 27.90833
58 15 Ottawa 28.28889
59 15 Pawnee 28.68889
60 15 Payne 28.40694
61 15 Pittsburg 28.59444
62 15 Pontotoc 28.22222
63 15 Pottawatomie 28.47778
64 15 Pushmataha 28.32593
65 15 Roger Mills 28.00556
66 15 Rogers 28.21389
67 15 Seminole 27.60000
68 15 Sequoyah 28.75000
69 15 Stephens 29.07778
70 15 Texas 29.45556
71 15 Tillman 30.91111
72 15 Tulsa 29.41667
73 15 Wagoner 28.42222
74 15 Washington 27.90000
75 15 Washita 30.03333
76 15 Woods 30.69444
77 15 Woodward 30.19074
$`2`
DAY county TAVG_C
1 16 Adair 27.75000
2 16 Alfalfa 30.03333
3 16 Atoka 28.65000
4 16 Beaver 27.10833
5 16 Beckham 28.65833
6 16 Blaine 29.17222
7 16 Bryan 28.22778
8 16 Caddo 28.58148
9 16 Canadian 28.50556
10 16 Carter 28.40833
11 16 Cherokee 27.98333
12 16 Choctaw 29.23889
13 16 Cimarron 22.91944
14 16 Cleveland 28.23333
15 16 Coal 29.03333
16 16 Comanche 28.38333
17 16 Cotton 29.39444
18 16 Craig 27.21667
19 16 Creek 27.42500
20 16 Custer 28.98611
21 16 Delaware 27.91667
22 16 Dewey 28.80833
23 16 Ellis 27.65000
24 16 Garfield 28.58333
25 16 Garvin 28.13889
26 16 Grady 28.57593
27 16 Grant 29.24444
28 16 Greer 29.66111
29 16 Harmon 29.94444
30 16 Harper 29.84444
31 16 Haskell 28.42222
32 16 Hughes 27.70000
33 16 Jackson 29.57778
34 16 Jefferson 29.28333
35 16 Johnston 28.03889
36 16 Kay 28.38056
37 16 Kingfisher 30.28333
38 16 Kiowa 29.67222
39 16 Latimer 29.15000
40 16 Le Flore 28.94167
41 16 Lincoln 27.85000
42 16 Logan 28.56389
43 16 Love 29.29444
44 16 Major 29.66944
45 16 Marshall 28.61111
46 16 Mayes 27.91111
47 16 McClain 27.22778
48 16 McCurtain 28.72778
49 16 McIntosh 29.10000
50 16 Murray 27.60556
51 16 Muskogee 28.49167
52 16 Noble 28.75556
53 16 Nowata 28.51667
54 16 Okfuskee 28.20556
55 16 Oklahoma 27.81389
56 16 Okmulgee 28.04444
57 16 Osage 27.73611
58 16 Ottawa 28.16667
59 16 Pawnee 28.29444
60 16 Payne 27.91528
61 16 Pittsburg 28.66389
62 16 Pontotoc 27.95278
63 16 Pottawatomie 28.26111
64 16 Pushmataha 28.97778
65 16 Roger Mills 27.28889
66 16 Rogers 28.25278
67 16 Seminole 27.35000
68 16 Sequoyah 28.90556
69 16 Stephens 28.49444
70 16 Texas 24.81852
71 16 Tillman 30.45556
72 16 Tulsa 29.41389
73 16 Wagoner 28.63333
74 16 Washington 27.93889
75 16 Washita 29.35000
76 16 Woods 29.47778
77 16 Woodward 29.30741
Like vlookup in Excel, I want to combine the weather data that matches the county name by date. I can combine each 1 day using this code, but I would like to combine weather data for 1-10 days using a loop.
z <- inner_join(ok_field, m$`1`,by="county",copy=TRUE)
county | DAY | TAVG_C |
---|---|---|
Woods | 15 | 30.69444444 |
Alfalfa | 15 | 31.13888889 |
Alfalfa | 15 | 31.13888889 |
Grant | 15 | 29.98888889 |
Alfalfa | 15 | 31.13888889 |
Major | 15 | 30.77777778 |
However, the table I want is as follows.
county | TAVG_C_15 | TAVG_C_16 |
---|---|---|
Woods | 30.69444444 | 24.81852 |
Alfalfa | 31.13888889 | 22.91944 |
Alfalfa | 31.13888889 | 24.81852 |
Grant | 29.98888889 | 22.91944 |
Alfalfa | 31.13888889 | 22.91944 |
Major | 30.77777778 | 24.81852 |
The code I've tried is the code below.
1.
look <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A)))
for (i in 1:nrow(A)){
look[,i]<-ok_field[list(m[i]), on="county", nomatch=0]
}
for (i in 1:nrow(A)){
look[,i] <- inner_join(ok_field, (m[i]),by="county",copy=TRUE)
}
If you can help me, I am grateful!
This uses a loop to populate the data frame that you desire.
ok_field=data.frame(county=c("Woods", "Alfalfa", "Grant", "Major"))
for (i in 1:length(m)) {
ok_field=inner_join(ok_field, pivot_wider(m[[i]], names_from=DAY, names_prefix="TAVG_C", values_from=TAVG_C), by="county")
}
county TAVG_C_15 TAVG_C_16
1 Woods 30.69444 29.47778
2 Alfalfa 31.13889 30.03333
3 Grant 29.98889 29.24444
4 Major 30.77778 29.66944