I have a dataframe like this
count | A | B | Total |
---|---|---|---|
yes | 4900 | 0 | 0 |
yes | 1000 | 1000 | 0 |
sum_yes | 5900 | 1000 | 0 |
yes | 4000 | 0 | 0 |
yes | 1000 | 0 | 0 |
sum_yes | 5000 | 0 | 0 |
I want result like this that is calculate max of column A and B only for rows where 'count' = 'sum_yes' if value of B =0 otherwise calculate minimum
count | A | B | Total |
---|---|---|---|
yes | 4900 | 0 | 0 |
yes | 1000 | 1000 | 0 |
sum_yes | 5900 | 1000 | 1000 |
yes | 4000 | 0 | 0 |
yes | 1000 | 0 | 0 |
sum_yes | 5000 | 0 | 5000 |
I have tried this so far:
df['Total'] = [df[['A', 'B']].where(df['count'] == 'sum_yes').max(axis=0) if
'B'==0 else df[['A', 'B']]
.where(df['count'] == 'sum_yes').min(axis=0)]
But I am getting ValueError The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()
Any idea how to solve this
You can use numpy.where
:
new_values = np.where((df["count"] == "sum_yes") & (df.B == 0),
df.loc[:, ["A", "B"]].max(1),
df.loc[:, ["A", "B"]].min(1),
)
df.assign(Total = new_values)
count A B Total
0 yes 4900 0 0
1 yes 1000 0 0
2 sum_yes 5900 1000 1000
3 yes 4000 1000 1000
4 yes 1000 0 0
5 sum_yes 5000 0 5000