I am currently working on building BiLSTM with Attention with the BiLSTM layer weights being optimised using Antlion Algorithm. The Antlion Alogrithm is in MATLAB code and I am able to integrate Python and MATLAB to receive the optimised weights as seen below:
#LSTM hidden nodes
hidden_nodes=11
import matlab.engine
eng = matlab.engine.start_matlab()
#call optimised_weights.m
[forward_kernel, backward_kernel,forward_recurrent, backward_recurrent]=eng.optimised_weights(int(hidden_nodes),nargout=4)
eng.quit()
## convert to nparray
forward_kernel=np.array(forward_kernel)
backward_kernel=np.array(backward_kernel)
forward_recurrent=np.array(forward_recurrent)
backward_recurrent=np.array(backward_recurrent)
I am currently facing issues with setting the weights and biases to the BiLSTM layer as created in the model below (without setting custom initial weights):
class attention(Layer):
def __init__(self, return_sequences=True,**kwargs):
self.return_sequences = return_sequences
super(attention,self).__init__()
def build(self, input_shape):
self.W=self.add_weight(name="att_weight", shape=(input_shape[-1],1),
initializer="normal")
self.b=self.add_weight(name="att_bias", shape=(input_shape[1],1),
initializer="zeros")
super(attention,self).build(input_shape)
def call(self, x):
e = K.tanh(K.dot(x,self.W)+self.b)
a = K.softmax(e, axis=1)
output = x*a
if self.return_sequences:
return output
return K.sum(output, axis=1)
def get_config(self):
# For serialization with 'custom_objects'
config = super().get_config()
config['return_sequences'] = self.return_sequences
return config
model = Sequential()
model.add(Input(shape=(5,1)))
model.add(Bidirectional(LSTM(hidden_nodes, return_sequences=True)))
model.add(attention(return_sequences=False)) #this is a custom layer...
model.add(Dense(104, activation="sigmoid"))
model.add(Dropout(0.2))
model.add(Dense(1, activation="sigmoid"))
model.compile(optimizer=tf.keras.optimizers.Adam(epsilon=1e-08,learning_rate=0.01),loss='mse')
es = EarlyStopping(monitor='val_loss', mode='min', verbose=2, patience=50)
mc = ModelCheckpoint('model.h5', monitor='val_loss',
mode='min', verbose=2, save_best_only=True)
I have tried the following method:
model.add(Bidirectional(LSTM(hidden_nodes, return_sequences=True,
weights=[forward_kernel,forward_recurrent,np.zeros(20,),backward_kernel,backward_recurrent,np.zeros(20,)])))
but the weights and biases are changed once the model is compiled...even if the kernel,recurrent and bias initialisers are set to None...
I have referred to this link: https://keras.io/api/layers/initializers/ but could not relate it with my issue...
I would really appreciate if you guys can provide an insight in solving this issue, and if there are any fundamental parts that I have missed. I would be glad to share more details if required.
Thanks!
Use tf.constant_initializer
to provide your custom weights as np.array
. Also, as you are using a Bidirectional
layer, you need to specify the backward layer with your custom weights explicitly.
layer = Bidirectional(
LSTM(
hidden_nodes,
return_sequences=True,
kernel_initializer=tf.constant_initializer(forward_kernel),
recurrent_initializer=tf.constant_initializer(forward_recurrent),
),
backward_layer=LSTM(
hidden_nodes,
return_sequences=True,
kernel_initializer=tf.constant_initializer(backward_kernel),
recurrent_initializer=tf.constant_initializer(backward_recurrent),
go_backwards=True,
),
)
Pay attention to the expected shape of the weights. As the input of the Layer is (batch, timesteps, features)
, your weights should have the following shape (to account for the 4 gates in the LSTM cell):
(features, 4*hidden_nodes)
(hidden_nodes, 4*hidden_nodes)
(4*hidden_nodes)