I'm have implemented an Evolutionary Algorithm process in Python 3.8, and am attempting to optimise/reduce its runtime. Due to the heavy constraints upon valid solutions, it can take a few minutes to generate valid chromosomes. To avoid spending hours just generating the initial population, I want to use Multiprocessing to generate multiple at a time.
My code at this point in time is:
populationCount = 500
def readDistanceMatrix():
# code removed
def generateAvailableValues():
# code removed
def generateAvailableValuesPerColumn():
# code removed
def generateScheduleTemplate():
# code removed
def generateChromosome():
# code removed
if __name__ == '__main__':
# Data type = DataFrame
distanceMatrix = readDistanceMatrix()
# Data type = List of Integers
availableValues = generateAvailableValues()
# Data type = List containing Lists of Integers
availableValuesPerColumn = generateAvailableValuesPerColumn(availableValues)
# Data type = DataFrame
scheduleTemplate = generateScheduleTemplate(distanceMatrix)
# Data type = List containing custom class (with Integer and DataFrame)
population = []
while len(population) < populationCount:
chrmSolution = generateChromosome(availableValuesPerColumn, scheduleTemplate, distanceMatrix)
population.append(chrmSolution)
Where the population list is filled in with the while loop at the end. I would like to replace the while loop with a Multiprocessing solution that can use up to a pre-set number of cores. For example:
population = []
availableCores = 6
while len(population) < populationCount:
while usedCores < availableCores:
# start generating another chromosome as 'chrmSolution'
population.append(chrmSolution)
However, after reading and watching hours worth of tutorials, I'm unable to get a loop up-and-running. How should I go about doing this?
It sounds like a simple multiprocessing.Pool
should do the trick, or at least be a place to start. Here's a simple example of how that might look:
from multiprocessing import Pool, cpu_count
child_globals = {} #mutable object at the `module` level acts as container for globals (constants)
if __name__ == '__main__':
# ...
def init_child(availableValuesPerColumn, scheduleTemplate, distanceMatrix):
#passing variables to the child process every time is inefficient if they're
# constant, so instead pass them to the initialization function, and let
# each child re-use them each time generateChromosome is called
child_globals['availableValuesPerColumn'] = availableValuesPerColumn
child_globals['scheduleTemplate'] = scheduleTemplate
child_globals['distanceMatrix'] = distanceMatrix
def child_work(i):
#child_work simply wraps generateChromosome with inputs, and throws out dummy `i` from `range()`
return generateChromosome(child_globals['availableValuesPerColumn'],
child_globals['scheduleTemplate'],
child_globals['distanceMatrix'])
with Pool(cpu_count(),
initializer=init_child, #init function to stuff some constants into the child's global context
initargs=(availableValuesPerColumn, scheduleTemplate, distanceMatrix)) as p:
#imap_unordered doesn't make child processes wait to ensure order is preserved,
# so it keeps the cpu busy more often. it returns a generator, so we use list()
# to store the results into a list.
population = list(p.imap_unordered(child_work, range(populationCount)))