I have a lot of pickle files. Currently I read them in a loop but it takes a lot of time. I would like to speed it up but don't have any idea how to do that.
Multiprocessing wouldn't work because in order to transfer data from a child subprocess to the main process data need to be serialized (pickled) and deserialized.
Using threading wouldn't help either because of GIL.
I think that the solution would be some library written in C that takes a list of files to read and then runs multiple threads (without GIL). Is there something like this around?
UPDATE Answering your questions:
pandas.Series
objects but the dtype is not known upfrontI think that the solution would be some library written in C that takes a list of files to read and then runs multiple threads (without GIL). Is there something like this around?
In short: no. pickle
is apparently good enough for enough people that there are no major alternate implementations fully compatible with the pickle protocol. As of sometime in python 3, cPickle
was merged with pickle
, and neither release the GIL anyway which is why threading won't help you (search for Py_BEGIN_ALLOW_THREADS
in _pickle.c and you will find nothing).
If your data can be re-structured into a simpler data format like csv, or a binary format like numpy
's npy, there will be less cpu overhead when reading your data. Pickle is built for flexibility first rather than speed or compactness first. One possible exception to the rule of more complex less speed is the HDF5 format using h5py
, which can be fairly complex, and I have used to max out the bandwidth of a sata ssd.
Finally you mention you have many many pickle files, and that itself is probably causing no small amount of overhead. Each time you open a new file, there's some overhead involved from the operating system. Conveniently you can combine pickle files by simply appending them together. Then you can call Unpickler.load()
until you reach the end of the file. Here's a quick example of combining two pickle files together using shutil
import pickle, shutil, os
#some dummy data
d1 = {'a': 1, 'b': 2, 1: 'a', 2: 'b'}
d2 = {'c': 3, 'd': 4, 3: 'c', 4: 'd'}
#create two pickles
with open('test1.pickle', 'wb') as f:
pickle.Pickler(f).dump(d1)
with open('test2.pickle', 'wb') as f:
pickle.Pickler(f).dump(d2)
#combine list of pickle files
with open('test3.pickle', 'wb') as dst:
for pickle_file in ['test1.pickle', 'test2.pickle']:
with open(pickle_file, 'rb') as src:
shutil.copyfileobj(src, dst)
#unpack the data
with open('test3.pickle', 'rb') as f:
p = pickle.Unpickler(f)
while True:
try:
print(p.load())
except EOFError:
break
#cleanup
os.remove('test1.pickle')
os.remove('test2.pickle')
os.remove('test3.pickle')