I have two dataframes, they have a start/end datetime and a value. Not the same number of rows. The intervals which overlap may not be in the same row/index.
df1
start_datetime end_datetime value
08:50 09:50 5
09:52 10:10 6
10:50 11:30 2
df2
start_datetime end_datetime value
08:51 08:59 3
09:52 10:02 9
10:03 10:30 1
11:03 11:39 1
13:10 13:15 0
I would like to calculate the sum of duration time when df1 and df2 overlap only if df1.value > df2.value
.
During one df2 time interval, df1 can overlaps multiple times and sometimes the condition is True.
I tried something like that:
time = timedelta()
for i, row1 in df1.iterrows():
t1 = pd.Interval(row1.start, row1.end)
for j, row2 in df2.iterrows():
t2 = pd.Interval(row2.start, row2.end)
if t1.overlaps(t2) and row1.value > row2.value:
latest_start = np.maximum(row1.start, row1.start)
earliest_end = np.minimum(row2.end, row2.end)
delta = earliest_end - latest_start
time += delta
I can loop on every df1 rows and test with the whole df2 data but it's not optimized.
expected output (example):
Timedelta('0 days 00:99:99')
Here is my solution:
df1 = pd.DataFrame(
{"start_datetime1": ['08:50' ,'09:52' ,'10:50 ' ],
'end_datetime1' : ['09:50','10:10','11:30'] ,
'value1': [5,6,2]})
df2 = pd.DataFrame(
{"start_datetime2": ['08:51' ,'09:52' ,'10:03 ','11:03 ','13:10 ' ],
'end_datetime2' : ['08:59','10:02','10:30','11:39', '13:15'] ,
'value2': [3,9,1,1,0]})
df2["start_datetime2"]= pd.to_datetime(df2["start_datetime2"])
df2["end_datetime2"]= pd.to_datetime(df2["end_datetime2"])
df1["start_datetime1"]= pd.to_datetime(df1["start_datetime1"])
df1["end_datetime1"]= pd.to_datetime(df1["end_datetime1"])
df1['temp'] = 1 #temporary keys to create all combinations
df2['temp'] = 1
df_combined = pd.merge(df1,df2,on='temp').drop('temp',axis=1)
df_combined['Result'] = df_combined.apply(lambda row: max(row["start_datetime1"],row["start_datetime2"]) -
min(row["start_datetime1"],row["start_datetime2"])
if pd.Interval(row['start_datetime1'], row['end_datetime1']).overlaps(
pd.Interval(row['start_datetime2'], row['end_datetime2'])) and
row["value1"] > row["value2"]
else 0, axis = 1 )
df_combined
Result :
total_timedelta = df_combined['Result'].loc[df_combined['Result'] != 0].sum()
0 days 00:25:00
Dataframe: