Search code examples
pythonopencvscikit-imageimage-conversion

How to convert cv2 image to skimage?


I am reading an image from a camera that comes in cv2.COLOR_RGB2BGR format. Below is a temporary work around for what I am trying to achieve:

import cv2
from skimage import transform, io

...
_, img = cam.read()
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite("temp.png", img)
img = io.imread("temp.png", as_gray=True)
img = transform.resize(img, (320, 240), mode='symmetric', preserve_range=True)

I found one way to do this conversion from this post, however, it seems that the image data is not the same than if I read the same image from a path?

I've also found from this documentation that I can use img_as_float(cv2_img), but this conversion does not produce the same result as what is returned by io.imread("temp.png", as_gray=True)


What is the proper way to do this conversion efficiently? Should I first convert the image back to RGB then use img_as_float()?


Solution

  • I guess, the basic problem you encounter, are the different luma calculations used by OpenCV and scikit-image:

    • OpenCV uses:
      Y = 0.299 * R + 0.587 * G + 0.114 * B
      
    • scikit-image uses:
      Y = 0.2125 * R + 0.7154 * G + 0.0721 * B
      

    Let's have some tests – using the following image for example:

    Paddington

    import cv2
    import numpy as np
    from skimage import io
    
    # Assuming we have some kind of "OpenCV image", i.e. BGR color ordering
    cv2_bgr = cv2.imread('paddington.png')
    
    # Convert to grayscale
    cv2_gray = cv2.cvtColor(cv2_bgr, cv2.COLOR_BGR2GRAY)
    
    # Save BGR image
    cv2.imwrite('cv2_bgr.png', cv2_bgr)
    
    # Save grayscale image
    cv2.imwrite('cv2_gray.png', cv2_gray)
    
    # Convert to grayscale with custom luma
    cv2_custom_luma = np.uint8(0.2125 * cv2_bgr[..., 2] + 0.7154 * cv2_bgr[..., 1] + 0.0721 * cv2_bgr[..., 0])
    
    # Load BGR saved image using scikit-image with as_gray; becomes np.float64
    sc_bgr_w = io.imread('cv2_bgr.png', as_gray=True)
    
    # Load grayscale saved image using scikit-image without as_gray; remains np.uint8
    sc_gray_wo = io.imread('cv2_gray.png')
    
    # Load grayscale saved image using scikit-image with as_gray; remains np.uint8
    sc_gray_w = io.imread('cv2_gray.png', as_gray=True)
    
    # OpenCV grayscale = scikit-image grayscale loaded image without as_gray? Yes.
    print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_gray, sc_gray_wo)))
    # Pixel mismatches: 0
    
    # OpenCV grayscale = scikit-image grayscale loaded image with as_gray? Yes.
    print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_gray, sc_gray_w)))
    # Pixel mismatches: 0
    
    # OpenCV grayscale = scikit-image BGR loaded (and scaled) image with as_gray? No.
    print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_gray, np.uint8(sc_bgr_w * 255))))
    # Pixel mismatches: 131244
    
    # OpenCV grayscale with custom luma = scikit-image BGR loaded (and scaled) image with as_gray? Almost.
    print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_custom_luma, np.uint8(sc_bgr_w * 255))))
    # Pixel mismatches: 1
    

    You see:

    • When opening the grayscale image, scikit-image simply uses the np.uint8 values, regardless of using as_gray=True or not.
    • When opening the color image with as_gray=True, scikit-image applies rgb2gray, scales all values to 0.0 ... 1.0, thus uses np.float64. Even scaling back to 0 ... 255 and np.uint8 yields a lot of pixel mismatches between this image and the OpenCV grayscale image – due to the different luma calculations.
    • When calculating the luma manually and accordingly to rgb2gray, the OpenCV grayscale image is almost identical. The one pixel mismatch might be due to floating point inaccuracies.
    ----------------------------------------
    System information
    ----------------------------------------
    Platform:      Windows-10-10.0.16299-SP0
    Python:        3.9.1
    NumPy:         1.20.1
    OpenCV:        4.5.1
    scikit-image:  0.18.1
    ----------------------------------------