I am reading an image from a camera that comes in cv2.COLOR_RGB2BGR
format. Below is a temporary work around for what I am trying to achieve:
import cv2
from skimage import transform, io
...
_, img = cam.read()
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite("temp.png", img)
img = io.imread("temp.png", as_gray=True)
img = transform.resize(img, (320, 240), mode='symmetric', preserve_range=True)
I found one way to do this conversion from this post, however, it seems that the image data is not the same than if I read the same image from a path?
I've also found from this documentation that I can use img_as_float(cv2_img)
, but this conversion does not produce the same result as what is returned by io.imread("temp.png", as_gray=True)
What is the proper way to do this conversion efficiently? Should I first convert the image back to RGB then use img_as_float()?
I guess, the basic problem you encounter, are the different luma calculations used by OpenCV and scikit-image:
Y = 0.299 * R + 0.587 * G + 0.114 * B
Y = 0.2125 * R + 0.7154 * G + 0.0721 * B
Let's have some tests – using the following image for example:
import cv2
import numpy as np
from skimage import io
# Assuming we have some kind of "OpenCV image", i.e. BGR color ordering
cv2_bgr = cv2.imread('paddington.png')
# Convert to grayscale
cv2_gray = cv2.cvtColor(cv2_bgr, cv2.COLOR_BGR2GRAY)
# Save BGR image
cv2.imwrite('cv2_bgr.png', cv2_bgr)
# Save grayscale image
cv2.imwrite('cv2_gray.png', cv2_gray)
# Convert to grayscale with custom luma
cv2_custom_luma = np.uint8(0.2125 * cv2_bgr[..., 2] + 0.7154 * cv2_bgr[..., 1] + 0.0721 * cv2_bgr[..., 0])
# Load BGR saved image using scikit-image with as_gray; becomes np.float64
sc_bgr_w = io.imread('cv2_bgr.png', as_gray=True)
# Load grayscale saved image using scikit-image without as_gray; remains np.uint8
sc_gray_wo = io.imread('cv2_gray.png')
# Load grayscale saved image using scikit-image with as_gray; remains np.uint8
sc_gray_w = io.imread('cv2_gray.png', as_gray=True)
# OpenCV grayscale = scikit-image grayscale loaded image without as_gray? Yes.
print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_gray, sc_gray_wo)))
# Pixel mismatches: 0
# OpenCV grayscale = scikit-image grayscale loaded image with as_gray? Yes.
print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_gray, sc_gray_w)))
# Pixel mismatches: 0
# OpenCV grayscale = scikit-image BGR loaded (and scaled) image with as_gray? No.
print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_gray, np.uint8(sc_bgr_w * 255))))
# Pixel mismatches: 131244
# OpenCV grayscale with custom luma = scikit-image BGR loaded (and scaled) image with as_gray? Almost.
print('Pixel mismatches:', cv2.countNonZero(cv2.absdiff(cv2_custom_luma, np.uint8(sc_bgr_w * 255))))
# Pixel mismatches: 1
You see:
np.uint8
values, regardless of using as_gray=True
or not.as_gray=True
, scikit-image applies rgb2gray
, scales all values to 0.0 ... 1.0
, thus uses np.float64
. Even scaling back to 0 ... 255
and np.uint8
yields a lot of pixel mismatches between this image and the OpenCV grayscale image – due to the different luma calculations.rgb2gray
, the OpenCV grayscale image is almost identical. The one pixel mismatch might be due to floating point inaccuracies.----------------------------------------
System information
----------------------------------------
Platform: Windows-10-10.0.16299-SP0
Python: 3.9.1
NumPy: 1.20.1
OpenCV: 4.5.1
scikit-image: 0.18.1
----------------------------------------