I try to implement this code, using colab:
x = np.load('data_sample.npy',allow_pickle=True)
stacked_x = np.concatenate([x,x,x],1)
stacked_x.shape
but my sample was an image in jpg format, so I wasn't able to convert these images to .npy to use it.
actually, I tried this code:
import numpy as np
array = np.asarray('image.JPG')
print(array.tobytes())
print(array)
x = np.load(array,allow_pickle=True)
stacked_x = np.concatenate([x,x,x],1)
stacked_x.shape
print(x)
and when I use this code :
x = np.load(array.tobytes(),allow_pickle=True)
so, any suggestion to solve this, precisely to convert .jpg to .npy?
Look at what your code does:
In [57]: np.asarray('image.JPG')
Out[57]: array('image.JPG', dtype='<U9')
In [58]: np.asarray('image.JPG').tobytes()
Out[58]: b'i\x00\x00\x00m\x00\x00\x00a\x00\x00\x00g\x00\x00\x00e\x00\x00\x00.\x00\x00\x00J\x00\x00\x00P\x00\x00\x00G\x00\x00\x00'
That's just playing with the string. It's not doing anything with a file named "image.JPG". You need to use some sort of image
processing package to first load the file, converting it from the compressed format to a 3d array.
np.load
is used to load a file that was created by np.save('file.npy')
. It doesn't make sense to give that array
variable as the file name. It won't load a jpg
file.
np.load('file.npy',allow_pickle=True)